Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To convert the repeating decimal [tex]\( z = 0.142857142857142857 \ldots \)[/tex] into a fraction, let’s follow a step-by-step approach:
1. Let [tex]\( x = 0.142857142857 \ldots \)[/tex]
2. Multiply both sides of the equation by [tex]\( 10^6 \)[/tex] to shift the repeating block of the decimal to the left of the decimal point:
[tex]\[ 10^6 x = 142857.142857 \ldots \][/tex]
Let's denote this new equation as:
[tex]\[ y = 142857.142857 \ldots \][/tex]
3. Subtract the original equation [tex]\( x \)[/tex] from this new equation [tex]\( y \)[/tex] to eliminate the repeating part:
[tex]\[ y - x = 142857.142857 \ldots - 0.142857 \ldots \][/tex]
This simplifies to:
[tex]\[ 10^6 x - x = 142857 \][/tex]
So,
[tex]\[ 999999x = 142857 \][/tex]
4. Solve for [tex]\( x \)[/tex] by isolating [tex]\( x \)[/tex]:
[tex]\[ x = \frac{142857}{999999} \][/tex]
5. To simplify the fraction [tex]\( \frac{142857}{999999} \)[/tex], find the greatest common divisor (GCD) of the numerator and the denominator. For this fraction, the GCD is 1, so it can't be simplified further.
Thus, the fraction for the repeating decimal [tex]\( z = 0.142857142857 \ldots \)[/tex] is already in its simplest form:
[tex]\[ \frac{2573485501354569}{18014398509481984} \][/tex]
Therefore, the repeating decimal [tex]\( z = 0.142857142857 \ldots \)[/tex] can be written as the simplified fraction:
[tex]\[ z = \frac{2573485501354569}{18014398509481984} \][/tex]
1. Let [tex]\( x = 0.142857142857 \ldots \)[/tex]
2. Multiply both sides of the equation by [tex]\( 10^6 \)[/tex] to shift the repeating block of the decimal to the left of the decimal point:
[tex]\[ 10^6 x = 142857.142857 \ldots \][/tex]
Let's denote this new equation as:
[tex]\[ y = 142857.142857 \ldots \][/tex]
3. Subtract the original equation [tex]\( x \)[/tex] from this new equation [tex]\( y \)[/tex] to eliminate the repeating part:
[tex]\[ y - x = 142857.142857 \ldots - 0.142857 \ldots \][/tex]
This simplifies to:
[tex]\[ 10^6 x - x = 142857 \][/tex]
So,
[tex]\[ 999999x = 142857 \][/tex]
4. Solve for [tex]\( x \)[/tex] by isolating [tex]\( x \)[/tex]:
[tex]\[ x = \frac{142857}{999999} \][/tex]
5. To simplify the fraction [tex]\( \frac{142857}{999999} \)[/tex], find the greatest common divisor (GCD) of the numerator and the denominator. For this fraction, the GCD is 1, so it can't be simplified further.
Thus, the fraction for the repeating decimal [tex]\( z = 0.142857142857 \ldots \)[/tex] is already in its simplest form:
[tex]\[ \frac{2573485501354569}{18014398509481984} \][/tex]
Therefore, the repeating decimal [tex]\( z = 0.142857142857 \ldots \)[/tex] can be written as the simplified fraction:
[tex]\[ z = \frac{2573485501354569}{18014398509481984} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.