At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To express the repeating decimal [tex]\( 6.927927927\ldots \)[/tex] as a rational number in the form [tex]\(\frac{p}{q}\)[/tex] where [tex]\(p\)[/tex] and [tex]\(q\)[/tex] have no common factors, follow these steps:
1. Define the repeating decimal:
Let [tex]\( x = 6.927927927\ldots \)[/tex].
2. Identify the repeating block:
The repeating block is [tex]\(927\)[/tex] which has 3 digits.
3. Form an equation by shifting the decimal point to the right:
Multiply [tex]\(x\)[/tex] by [tex]\(1000\)[/tex] (since the repeating block is 3 digits long, we multiply by [tex]\(10^3\)[/tex]):
[tex]\[ 1000x = 6927.927927927\ldots \][/tex]
4. Subtract the original equation from the new one:
Subtract [tex]\(x = 6.927927927\ldots\)[/tex]:
[tex]\[ 1000x - x = 6927.927927927\ldots - 6.927927927\ldots \][/tex]
[tex]\[ 999x = 6921 \][/tex]
5. Solve for [tex]\(x\)[/tex]:
Isolate [tex]\(x\)[/tex] by dividing both sides by 999:
[tex]\[ x = \frac{6921}{999} \][/tex]
6. Simplify the fraction:
To simplify [tex]\(\frac{6921}{999}\)[/tex], find the greatest common divisor (GCD) of the numerator and the denominator. The GCD of 6921 and 999 is 9.
Divide the numerator and the denominator by their GCD:
[tex]\[ \frac{6921}{999} = \frac{6921 \div 9}{999 \div 9} = \frac{769}{111} \][/tex]
Thus, the repeating decimal [tex]\( 6.927927927\ldots \)[/tex] can be expressed as the rational number:
[tex]\[ \frac{p}{q} = \frac{769}{111} \][/tex]
Where [tex]\(p = 769\)[/tex] and [tex]\(q = 111\)[/tex].
[tex]\[ \begin{array}{l} p=769 \text { and } \\ q=111 \end{array} \][/tex]
1. Define the repeating decimal:
Let [tex]\( x = 6.927927927\ldots \)[/tex].
2. Identify the repeating block:
The repeating block is [tex]\(927\)[/tex] which has 3 digits.
3. Form an equation by shifting the decimal point to the right:
Multiply [tex]\(x\)[/tex] by [tex]\(1000\)[/tex] (since the repeating block is 3 digits long, we multiply by [tex]\(10^3\)[/tex]):
[tex]\[ 1000x = 6927.927927927\ldots \][/tex]
4. Subtract the original equation from the new one:
Subtract [tex]\(x = 6.927927927\ldots\)[/tex]:
[tex]\[ 1000x - x = 6927.927927927\ldots - 6.927927927\ldots \][/tex]
[tex]\[ 999x = 6921 \][/tex]
5. Solve for [tex]\(x\)[/tex]:
Isolate [tex]\(x\)[/tex] by dividing both sides by 999:
[tex]\[ x = \frac{6921}{999} \][/tex]
6. Simplify the fraction:
To simplify [tex]\(\frac{6921}{999}\)[/tex], find the greatest common divisor (GCD) of the numerator and the denominator. The GCD of 6921 and 999 is 9.
Divide the numerator and the denominator by their GCD:
[tex]\[ \frac{6921}{999} = \frac{6921 \div 9}{999 \div 9} = \frac{769}{111} \][/tex]
Thus, the repeating decimal [tex]\( 6.927927927\ldots \)[/tex] can be expressed as the rational number:
[tex]\[ \frac{p}{q} = \frac{769}{111} \][/tex]
Where [tex]\(p = 769\)[/tex] and [tex]\(q = 111\)[/tex].
[tex]\[ \begin{array}{l} p=769 \text { and } \\ q=111 \end{array} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.