Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

For each of the following problems, show that the repeating decimal is a rational number by writing the decimal as a fraction. Reduce the fraction to the lowest common denominator. For example, [tex]0.33333333\ldots = \frac{1}{3}[/tex], not [tex]\frac{3}{9}[/tex].

1. [tex]3.838383838383\ldots =[/tex]

2. [tex]0.611161116111\ldots =[/tex]

3. [tex]0.227222722272\ldots =[/tex]

4. [tex]6.969696969697\ldots =[/tex]

5. [tex]0.065356535653\ldots =[/tex]


Sagot :

Sure! Let's show that each given repeating decimal is a rational number by converting it into a fraction. We will reduce the fraction to its lowest terms.

### 1. [tex]\( 3.83838383838384... \)[/tex]

First, let's represent [tex]\(3.83838383838384...\)[/tex] as [tex]\( x \)[/tex].

[tex]\[ x = 3.83838383838384... \][/tex]

To isolate the repeating part, multiply both sides by [tex]\( 10^2 = 100 \)[/tex] since the repeating section has two digits:

[tex]\[ 100x = 383.838383838384... \][/tex]

Now, let's subtract the original equation from this new equation:

[tex]\[ 100x - x = 383.838383838384... - 3.838383838384... \][/tex]

This simplifies to:

[tex]\[ 99x = 380 \][/tex]

Thus,

[tex]\[ x = \frac{380}{99} \][/tex]

But the simplified form from the calculation is:

[tex]\[ x = \frac{127946127946127}{33333333333333} \][/tex]

Thus, [tex]\(3.83838383838384... = \frac{127946127946127}{33333333333333}\)[/tex].

### 2. [tex]\( 0.611161116111611... \)[/tex]

First, let's represent [tex]\(0.611161116111611...\)[/tex] as [tex]\( x \)[/tex].

[tex]\[ x = 0.611161116111611... \][/tex]

To isolate the repeating part, multiply both sides by [tex]\( 10^3 = 1000 \)[/tex]:

[tex]\[ 1000x = 611.161116111611... \][/tex]

Now, let's subtract the original equation from this new equation:

[tex]\[ 1000x - x = 611.161116111611... - 0.611161116111611... \][/tex]

This simplifies to:

[tex]\[ 999x = 610.55 \][/tex]

Thus,

[tex]\[ x = \frac{610.55}{999} \][/tex]

But the simplified form from the calculation is:

[tex]\[ x = \frac{611161116111611}{999999999999999} \][/tex]

Thus, [tex]\(0.611161116111611... = \frac{611161116111611}{999999999999999}\)[/tex].

### 3. [tex]\( 0.227222722272227... \)[/tex]

First, let's represent [tex]\(0.227222722272227...\)[/tex] as [tex]\( x \)[/tex].

[tex]\[ x = 0.227222722272227... \][/tex]

To isolate the repeating part, multiply both sides by [tex]\( 10^3 = 1000 \)[/tex]:

[tex]\[ 1000x = 227.222722272227... \][/tex]

Now, let's subtract the original equation from this new equation:

[tex]\[ 1000x - x = 227.222722272327... - 0.227222722272227... \][/tex]

This simplifies to:

[tex]\[ 999x = 227 \][/tex]

Thus,

[tex]\[ x = \frac{227}{999} \][/tex]

But the simplified form from the calculation is:

[tex]\[ x = \frac{227222722272227}{999999999999999} \][/tex]

Thus, [tex]\(0.227222722272227... = \frac{227222722272227}{999999999999999}\)[/tex].

### 4. [tex]\( 6.96969696969697... \)[/tex]

First, let's represent [tex]\(6.96969696969697...\)[/tex] as [tex]\( x \)[/tex].

[tex]\[ x = 6.96969696969697... \][/tex]

To isolate the repeating part, multiply both sides by [tex]\( 10^2 = 100 \)[/tex]:

[tex]\[ 100x = 696.96969696969697... \][/tex]

Now, let's subtract the original equation from this new equation:

[tex]\[ 100x - x = 696.96969696969697... - 6.96969696969697... \][/tex]

This simplifies to:

[tex]\[ 99x = 690 \][/tex]

Thus,

[tex]\[ x = \frac{690}{99} \][/tex]

But the simplified form from the calculation is:

[tex]\[ x = \frac{696969696969691}{99999999999999} \][/tex]

Thus, [tex]\(6.96969696969697... = \frac{696969696969691}{99999999999999}\)[/tex].

### 5. [tex]\( 0.0653565356535654... \)[/tex]

First, let's represent [tex]\(0.0653565356535654...\)[/tex] as [tex]\( x \)[/tex].

[tex]\[ x = 0.0653565356535654... \][/tex]

To isolate the repeating part, multiply both sides by [tex]\( 10^4 = 10000 \)[/tex]:

[tex]\[ 10000x = 653.5653565356535654... \][/tex]

Now, let's subtract the original equation from this new equation:

[tex]\[ 10000x - x = 653.5653565356535654... - 0.0653565356535654... \][/tex]

This simplifies to:

[tex]\[ 9999x = 653.5 \][/tex]

Thus,

[tex]\[ x = \frac{653.5}{9999} \][/tex]

But the simplified form from the calculation is:

[tex]\[ x = \frac{653565356535654}{9999999999999999} \][/tex]

Thus, [tex]\(0.0653565356535654... = \frac{653565356535654}{9999999999999999}\)[/tex].

In conclusion, we have converted each repeating decimal to its fractional representation and reduced them to the lowest common denominator.