Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To convert the repeating decimal [tex]\( z = 0.142857142857\ldots \)[/tex] to a fraction, follow these steps:
1. Identify the repeating part: Note that the repeating sequence is [tex]\( 142857 \)[/tex], which has 6 digits.
2. Set up an equation: Let [tex]\( z = 0.142857142857\ldots \)[/tex].
3. Eliminate the repeating part: Multiply both sides of the equation by [tex]\( 10^6 \)[/tex] (because the repeating part has 6 digits):
[tex]\[ 10^6z = 142857.142857142857\ldots \][/tex]
4. Subtract the original equation from this new equation to eliminate the repeating decimals:
[tex]\[ 10^6z - z = 142857.142857142857\ldots - 0.142857142857\ldots \][/tex]
Simplifying this gives:
[tex]\[ 999999z = 142857 \][/tex]
5. Solve for [tex]\( z \)[/tex] by dividing both sides of the equation by [tex]\( 999999 \)[/tex]:
[tex]\[ z = \frac{142857}{999999} \][/tex]
6. Simplify the fraction: To simplify [tex]\( \frac{142857}{999999} \)[/tex], we find the greatest common divisor (GCD) of 142857 and 999999. It turns out that the GCD is 142857.
Dividing both the numerator and the denominator by 142857, we get:
[tex]\[ \frac{142857 \div 142857}{999999 \div 142857} = \frac{1}{7} \][/tex]
Therefore, the repeating decimal [tex]\( z = 0.142857142857\ldots \)[/tex] can be written as the simplified fraction:
[tex]\[ z = \frac{1}{7} \][/tex]
1. Identify the repeating part: Note that the repeating sequence is [tex]\( 142857 \)[/tex], which has 6 digits.
2. Set up an equation: Let [tex]\( z = 0.142857142857\ldots \)[/tex].
3. Eliminate the repeating part: Multiply both sides of the equation by [tex]\( 10^6 \)[/tex] (because the repeating part has 6 digits):
[tex]\[ 10^6z = 142857.142857142857\ldots \][/tex]
4. Subtract the original equation from this new equation to eliminate the repeating decimals:
[tex]\[ 10^6z - z = 142857.142857142857\ldots - 0.142857142857\ldots \][/tex]
Simplifying this gives:
[tex]\[ 999999z = 142857 \][/tex]
5. Solve for [tex]\( z \)[/tex] by dividing both sides of the equation by [tex]\( 999999 \)[/tex]:
[tex]\[ z = \frac{142857}{999999} \][/tex]
6. Simplify the fraction: To simplify [tex]\( \frac{142857}{999999} \)[/tex], we find the greatest common divisor (GCD) of 142857 and 999999. It turns out that the GCD is 142857.
Dividing both the numerator and the denominator by 142857, we get:
[tex]\[ \frac{142857 \div 142857}{999999 \div 142857} = \frac{1}{7} \][/tex]
Therefore, the repeating decimal [tex]\( z = 0.142857142857\ldots \)[/tex] can be written as the simplified fraction:
[tex]\[ z = \frac{1}{7} \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.