Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

Which expression is equivalent to [tex]\left(a^8\right)^4[/tex]?

A. [tex]a^2[/tex]
B. [tex]a^4[/tex]
C. [tex]a^{12}[/tex]
D. [tex]a^{32}[/tex]


Sagot :

To find an expression equivalent to [tex]\((a^8)^4\)[/tex], we can use the power rule for exponents. The power rule states that when raising a power to another power, you multiply the exponents. Mathematically, this is expressed as:

[tex]\[ (a^m)^n = a^{m \cdot n} \][/tex]

Let's apply this rule to the given expression [tex]\((a^8)^4\)[/tex]:

1. Identify the inner exponent [tex]\( m \)[/tex] and the outer exponent [tex]\( n \)[/tex]. In this case, [tex]\( m = 8 \)[/tex] and [tex]\( n = 4 \)[/tex].
2. Multiply the exponents together:

[tex]\[ m \cdot n = 8 \cdot 4 \][/tex]

3. Calculate the product of the exponents:

[tex]\[ 8 \cdot 4 = 32 \][/tex]

4. Substitute this result back into the expression:

[tex]\[ (a^8)^4 = a^{32} \][/tex]

Therefore, the expression equivalent to [tex]\((a^8)^4\)[/tex] is:

[tex]\[ a^{32} \][/tex]

So, the correct answer is [tex]\( a^{32} \)[/tex].