Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the equivalent expression for [tex]\(\left(2 x^4 y\right)^3\)[/tex], let's break the problem down step-by-step using exponent rules.
We start with the expression:
[tex]\[ \left(2 x^4 y\right)^3 \][/tex]
### Step 1: Apply the Power to Each Factor
When raising a product to a power, we apply the exponent to each factor within the parentheses. This means that we distribute the exponent of 3 to each part of the product:
[tex]\[ \left(2\right)^3 \left(x^4\right)^3 \left(y\right)^3 \][/tex]
### Step 2: Simplify Each Term
Now, let's simplify each term individually.
1. Simplify [tex]\((2)^3\)[/tex]:
[tex]\[ 2^3 = 8 \][/tex]
2. Simplify [tex]\((x^4)^3\)[/tex]:
[tex]\[ (x^4)^3 = x^{4 \cdot 3} = x^{12} \][/tex]
3. Simplify [tex]\((y)^3\)[/tex]:
[tex]\[ (y)^3 = y^{1 \cdot 3} = y^3 \][/tex]
### Step 3: Combine the Results
Putting all the simplified terms together, we get:
[tex]\[ \left(2 x^4 y\right)^3 = 8 x^{12} y^3 \][/tex]
Therefore, the expression equivalent to [tex]\(\left(2 x^4 y\right)^3\)[/tex] is:
[tex]\[ \boxed{8 x^{12} y^3} \][/tex]
We start with the expression:
[tex]\[ \left(2 x^4 y\right)^3 \][/tex]
### Step 1: Apply the Power to Each Factor
When raising a product to a power, we apply the exponent to each factor within the parentheses. This means that we distribute the exponent of 3 to each part of the product:
[tex]\[ \left(2\right)^3 \left(x^4\right)^3 \left(y\right)^3 \][/tex]
### Step 2: Simplify Each Term
Now, let's simplify each term individually.
1. Simplify [tex]\((2)^3\)[/tex]:
[tex]\[ 2^3 = 8 \][/tex]
2. Simplify [tex]\((x^4)^3\)[/tex]:
[tex]\[ (x^4)^3 = x^{4 \cdot 3} = x^{12} \][/tex]
3. Simplify [tex]\((y)^3\)[/tex]:
[tex]\[ (y)^3 = y^{1 \cdot 3} = y^3 \][/tex]
### Step 3: Combine the Results
Putting all the simplified terms together, we get:
[tex]\[ \left(2 x^4 y\right)^3 = 8 x^{12} y^3 \][/tex]
Therefore, the expression equivalent to [tex]\(\left(2 x^4 y\right)^3\)[/tex] is:
[tex]\[ \boxed{8 x^{12} y^3} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.