Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the equivalent expression for [tex]\(\left(2 x^4 y\right)^3\)[/tex], let's break the problem down step-by-step using exponent rules.
We start with the expression:
[tex]\[ \left(2 x^4 y\right)^3 \][/tex]
### Step 1: Apply the Power to Each Factor
When raising a product to a power, we apply the exponent to each factor within the parentheses. This means that we distribute the exponent of 3 to each part of the product:
[tex]\[ \left(2\right)^3 \left(x^4\right)^3 \left(y\right)^3 \][/tex]
### Step 2: Simplify Each Term
Now, let's simplify each term individually.
1. Simplify [tex]\((2)^3\)[/tex]:
[tex]\[ 2^3 = 8 \][/tex]
2. Simplify [tex]\((x^4)^3\)[/tex]:
[tex]\[ (x^4)^3 = x^{4 \cdot 3} = x^{12} \][/tex]
3. Simplify [tex]\((y)^3\)[/tex]:
[tex]\[ (y)^3 = y^{1 \cdot 3} = y^3 \][/tex]
### Step 3: Combine the Results
Putting all the simplified terms together, we get:
[tex]\[ \left(2 x^4 y\right)^3 = 8 x^{12} y^3 \][/tex]
Therefore, the expression equivalent to [tex]\(\left(2 x^4 y\right)^3\)[/tex] is:
[tex]\[ \boxed{8 x^{12} y^3} \][/tex]
We start with the expression:
[tex]\[ \left(2 x^4 y\right)^3 \][/tex]
### Step 1: Apply the Power to Each Factor
When raising a product to a power, we apply the exponent to each factor within the parentheses. This means that we distribute the exponent of 3 to each part of the product:
[tex]\[ \left(2\right)^3 \left(x^4\right)^3 \left(y\right)^3 \][/tex]
### Step 2: Simplify Each Term
Now, let's simplify each term individually.
1. Simplify [tex]\((2)^3\)[/tex]:
[tex]\[ 2^3 = 8 \][/tex]
2. Simplify [tex]\((x^4)^3\)[/tex]:
[tex]\[ (x^4)^3 = x^{4 \cdot 3} = x^{12} \][/tex]
3. Simplify [tex]\((y)^3\)[/tex]:
[tex]\[ (y)^3 = y^{1 \cdot 3} = y^3 \][/tex]
### Step 3: Combine the Results
Putting all the simplified terms together, we get:
[tex]\[ \left(2 x^4 y\right)^3 = 8 x^{12} y^3 \][/tex]
Therefore, the expression equivalent to [tex]\(\left(2 x^4 y\right)^3\)[/tex] is:
[tex]\[ \boxed{8 x^{12} y^3} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.