Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine which expression is equivalent to [tex]\(\frac{(x^6 y^8)^3}{x^2 y^2}\)[/tex], let's break it down step by step.
1. Simplifying the Numerator:
[tex]\[ (x^6 y^8)^3 \][/tex]
Using the power of a power property [tex]\((a^m)^n = a^{mn}\)[/tex]:
[tex]\[ x^{6 \cdot 3} \cdot y^{8 \cdot 3} = x^{18} \cdot y^{24} \][/tex]
2. Simplifying the Entire Fraction:
Substituting the simplified numerator back into the fraction:
[tex]\[ \frac{x^{18} y^{24}}{x^2 y^2} \][/tex]
Using the division property of exponents [tex]\( \frac{a^m}{a^n} = a^{m-n} \)[/tex]:
[tex]\[ \frac{x^{18}}{x^2} \cdot \frac{y^{24}}{y^2} = x^{18-2} \cdot y^{24-2} = x^{16} \cdot y^{22} \][/tex]
Thus, the equivalent expression is [tex]\(x^{16} y^{22}\)[/tex].
Therefore, the correct answer is:
[tex]\[ \boxed{x^{16} y^{22}} \][/tex]
1. Simplifying the Numerator:
[tex]\[ (x^6 y^8)^3 \][/tex]
Using the power of a power property [tex]\((a^m)^n = a^{mn}\)[/tex]:
[tex]\[ x^{6 \cdot 3} \cdot y^{8 \cdot 3} = x^{18} \cdot y^{24} \][/tex]
2. Simplifying the Entire Fraction:
Substituting the simplified numerator back into the fraction:
[tex]\[ \frac{x^{18} y^{24}}{x^2 y^2} \][/tex]
Using the division property of exponents [tex]\( \frac{a^m}{a^n} = a^{m-n} \)[/tex]:
[tex]\[ \frac{x^{18}}{x^2} \cdot \frac{y^{24}}{y^2} = x^{18-2} \cdot y^{24-2} = x^{16} \cdot y^{22} \][/tex]
Thus, the equivalent expression is [tex]\(x^{16} y^{22}\)[/tex].
Therefore, the correct answer is:
[tex]\[ \boxed{x^{16} y^{22}} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.