Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve for the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] that make the given equation true:
[tex]\[ \frac{(2xy)^4}{4xy} = 4x^a y^b \][/tex]
we begin by simplifying the left-hand side of the equation step-by-step.
1. Simplify [tex]\((2xy)^4\)[/tex]:
[tex]\[\begin{align*} (2xy)^4 & = (2^4)(x^4)(y^4) \\ & = 16x^4y^4. \end{align*}\][/tex]
2. Substitute this back into the original equation:
[tex]\[ \frac{16x^4y^4}{4xy}. \][/tex]
3. Next, simplify the fraction [tex]\(\frac{16x^4y^4}{4xy}\)[/tex]:
[tex]\[\begin{align*} \frac{16x^4y^4}{4xy} & = \frac{16}{4} \cdot \frac{x^4}{x} \cdot \frac{y^4}{y} \\ & = 4 \cdot x^{4-1} \cdot y^{4-1} \\ & = 4x^3y^3. \end{align*}\][/tex]
So now we have:
[tex]\[ 4x^3y^3 = 4x^a y^b. \][/tex]
4. By comparing the exponents of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] on both sides of the equation:
[tex]\[\begin{align*} x^3 & = x^a, \quad \text{which implies that} \; a = 3, \\ y^3 & = y^b, \quad \text{which implies that} \; b = 3. \end{align*}\][/tex]
Therefore, the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] that make the equation true are:
[tex]\[ a = 3 \quad \text{and} \quad b = 3. \][/tex]
Among the given options:
- [tex]\(a = 0, b = 0\)[/tex]
- [tex]\(a = 3, b = 3\)[/tex]
- [tex]\(a = 4, b = 4\)[/tex]
- [tex]\(a = 5, b = 5\)[/tex]
The correct answer is:
[tex]\[ a = 3, b = 3. \][/tex]
[tex]\[ \frac{(2xy)^4}{4xy} = 4x^a y^b \][/tex]
we begin by simplifying the left-hand side of the equation step-by-step.
1. Simplify [tex]\((2xy)^4\)[/tex]:
[tex]\[\begin{align*} (2xy)^4 & = (2^4)(x^4)(y^4) \\ & = 16x^4y^4. \end{align*}\][/tex]
2. Substitute this back into the original equation:
[tex]\[ \frac{16x^4y^4}{4xy}. \][/tex]
3. Next, simplify the fraction [tex]\(\frac{16x^4y^4}{4xy}\)[/tex]:
[tex]\[\begin{align*} \frac{16x^4y^4}{4xy} & = \frac{16}{4} \cdot \frac{x^4}{x} \cdot \frac{y^4}{y} \\ & = 4 \cdot x^{4-1} \cdot y^{4-1} \\ & = 4x^3y^3. \end{align*}\][/tex]
So now we have:
[tex]\[ 4x^3y^3 = 4x^a y^b. \][/tex]
4. By comparing the exponents of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] on both sides of the equation:
[tex]\[\begin{align*} x^3 & = x^a, \quad \text{which implies that} \; a = 3, \\ y^3 & = y^b, \quad \text{which implies that} \; b = 3. \end{align*}\][/tex]
Therefore, the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] that make the equation true are:
[tex]\[ a = 3 \quad \text{and} \quad b = 3. \][/tex]
Among the given options:
- [tex]\(a = 0, b = 0\)[/tex]
- [tex]\(a = 3, b = 3\)[/tex]
- [tex]\(a = 4, b = 4\)[/tex]
- [tex]\(a = 5, b = 5\)[/tex]
The correct answer is:
[tex]\[ a = 3, b = 3. \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.