Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

If a [tex]$45^{\circ}-45^{\circ}-90^{\circ}$[/tex] triangle has a hypotenuse length of [tex]$7 \sqrt{2}$[/tex], what is the length of each leg of the triangle?

Select the correct answer:
A. [tex]$7 \sqrt{2}$[/tex]
B. 7
C. [tex]$\sqrt{2}$[/tex]
D. 2


Sagot :

A [tex]\(45^\circ-45^\circ-90^\circ\)[/tex] triangle, also known as an isosceles right triangle, has certain properties that stem from its angles. Specifically, the legs of the triangle are congruent, and the hypotenuse is related to the length of each leg by a factor of [tex]\(\sqrt{2}\)[/tex].

Given that the hypotenuse [tex]\(h\)[/tex] is [tex]\(7\sqrt{2}\)[/tex], we need to find the length of each leg [tex]\(a\)[/tex].

The relationship between the hypotenuse and the legs in a [tex]\(45^\circ-45^\circ-90^\circ\)[/tex] triangle can be given by:
[tex]\[ h = a \sqrt{2} \][/tex]

We can solve for [tex]\(a\)[/tex] by isolating it on one side of the equation:
[tex]\[ a = \frac{h}{\sqrt{2}} \][/tex]

Substitute the given hypotenuse [tex]\(h = 7\sqrt{2}\)[/tex] into the equation:
[tex]\[ a = \frac{7\sqrt{2}}{\sqrt{2}} \][/tex]

When you divide [tex]\(7\sqrt{2}\)[/tex] by [tex]\(\sqrt{2}\)[/tex], the [tex]\(\sqrt{2}\)[/tex] terms cancel out:
[tex]\[ a = \frac{7 \cancel{\sqrt{2}}}{\cancel{\sqrt{2}}} \][/tex]
[tex]\[ a = 7 \][/tex]

Thus, the length of each leg of the triangle is 7.

So the correct answer is:
[tex]\[ \boxed{7} \][/tex]