Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the final volume of the gas within the cylinder, we can use the combined gas law, which relates the pressure, volume, and temperature of a gas in two different states.
The combined gas law is stated as:
[tex]\[ \frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} \][/tex]
Where:
- [tex]\( P_1 \)[/tex] is the initial pressure,
- [tex]\( V_1 \)[/tex] is the initial volume,
- [tex]\( T_1 \)[/tex] is the initial temperature,
- [tex]\( P_2 \)[/tex] is the final pressure,
- [tex]\( V_2 \)[/tex] is the final volume,
- [tex]\( T_2 \)[/tex] is the final temperature.
Given values:
- Initial volume, [tex]\( V_1 = 1.0 \)[/tex] L
- Initial pressure, [tex]\( P_1 = 950 \)[/tex] mm Hg
- Final pressure, [tex]\( P_2 = 715 \)[/tex] mm Hg
- Initial temperature, [tex]\( T_1 = 315 \)[/tex] K
- Final temperature, [tex]\( T_2 = 305 \)[/tex] K
We need to solve for the final volume [tex]\( V_2 \)[/tex]. By rearranging the combined gas law equation to solve for [tex]\( V_2 \)[/tex], we get:
[tex]\[ V_2 = \frac{P_1 V_1 T_2}{P_2 T_1} \][/tex]
Now, let's plug in the given values and calculate:
[tex]\[ V_2 = \frac{950 \text{ mm Hg} \times 1.0 \text{ L} \times 305 \text{ K}}{715 \text{ mm Hg} \times 315 \text{ K}} \][/tex]
Simplify the expression step-by-step:
1. Multiply the numerator:
[tex]\[ 950 \times 305 = 289750 \][/tex]
2. Multiply the denominator:
[tex]\[ 715 \times 315 = 225225 \][/tex]
3. Divide the results:
[tex]\[ V_2 = \frac{289750}{225225} \approx 1.286 \text{ L} \][/tex]
Thus, the final volume of the gas in the cylinder is approximately 1.286 liters.
The combined gas law is stated as:
[tex]\[ \frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} \][/tex]
Where:
- [tex]\( P_1 \)[/tex] is the initial pressure,
- [tex]\( V_1 \)[/tex] is the initial volume,
- [tex]\( T_1 \)[/tex] is the initial temperature,
- [tex]\( P_2 \)[/tex] is the final pressure,
- [tex]\( V_2 \)[/tex] is the final volume,
- [tex]\( T_2 \)[/tex] is the final temperature.
Given values:
- Initial volume, [tex]\( V_1 = 1.0 \)[/tex] L
- Initial pressure, [tex]\( P_1 = 950 \)[/tex] mm Hg
- Final pressure, [tex]\( P_2 = 715 \)[/tex] mm Hg
- Initial temperature, [tex]\( T_1 = 315 \)[/tex] K
- Final temperature, [tex]\( T_2 = 305 \)[/tex] K
We need to solve for the final volume [tex]\( V_2 \)[/tex]. By rearranging the combined gas law equation to solve for [tex]\( V_2 \)[/tex], we get:
[tex]\[ V_2 = \frac{P_1 V_1 T_2}{P_2 T_1} \][/tex]
Now, let's plug in the given values and calculate:
[tex]\[ V_2 = \frac{950 \text{ mm Hg} \times 1.0 \text{ L} \times 305 \text{ K}}{715 \text{ mm Hg} \times 315 \text{ K}} \][/tex]
Simplify the expression step-by-step:
1. Multiply the numerator:
[tex]\[ 950 \times 305 = 289750 \][/tex]
2. Multiply the denominator:
[tex]\[ 715 \times 315 = 225225 \][/tex]
3. Divide the results:
[tex]\[ V_2 = \frac{289750}{225225} \approx 1.286 \text{ L} \][/tex]
Thus, the final volume of the gas in the cylinder is approximately 1.286 liters.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.