Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the values of [tex]\( x \)[/tex] for which the second derivative [tex]\( f''(x) \)[/tex] of the function [tex]\( f(x) = \frac{5}{2} x^2 e^x \)[/tex] is zero, let us follow these steps:
1. Compute the first derivative [tex]\( f'(x) \)[/tex]:
- We need to apply the product rule for the differentiation of [tex]\( f(x) \)[/tex]. The product rule states that [tex]\( (uv)' = u'v + uv' \)[/tex], where [tex]\( u = \frac{5}{2} x^2 \)[/tex] and [tex]\( v = e^x \)[/tex].
- The derivative of [tex]\( u = \frac{5}{2} x^2 \)[/tex] is [tex]\( u' = 5x \)[/tex].
- The derivative of [tex]\( v = e^x \)[/tex] is [tex]\( v' = e^x \)[/tex].
- Using the product rule:
[tex]\[ f'(x) = \left( \frac{5}{2} x^2 \right)' e^x + \frac{5}{2} x^2 (e^x)' = 5x e^x + \frac{5}{2} x^2 e^x = e^x \left( 5x + \frac{5}{2} x^2 \right) \][/tex]
[tex]\[ f'(x) = \frac{5}{2} x e^x (2 + x) \][/tex]
2. Compute the second derivative [tex]\( f''(x) \)[/tex]:
- Again, apply the product rule to [tex]\( f'(x) = \frac{5}{2} e^x x (2 + x) \)[/tex]. We treat this as a product of two functions:
- Let [tex]\( u = \frac{5}{2} x (2 + x) \)[/tex] and [tex]\( v = e^x \)[/tex].
- The derivative of [tex]\( u \)[/tex] is:
[tex]\[ u' = \frac{5}{2} (2 + x + x) = \frac{5}{2} (2 + 2x) = \frac{5}{2} \cdot 2 (1 + x) = 5 (1 + x) \][/tex]
- The derivative of [tex]\( v = e^x \)[/tex] is [tex]\( v' = e^x \)[/tex].
- Applying the product rule again:
[tex]\[ f''(x) = \left( \frac{5}{2} x (2 + x) \right)' e^x + \frac{5}{2} x (2 + x) \left( e^x \right)' \][/tex]
[tex]\[ f''(x) = 5 (1 + x) e^x + \frac{5}{2} x (2 + x) e^x = e^x \left( 5 (1 + x) + \frac{5}{2} x (2 + x) \right) \][/tex]
[tex]\[ f''(x) = e^x \left( 5 + 5x + \frac{5}{2}(2x + x^2) \right) = e^x \left( 5 + 5x + 5x + \frac{5}{2} x^2 \right) \][/tex]
[tex]\[ f''(x) = e^x \left( 5 + 10x + \frac{5}{2} x^2 \right) = e^x \left( \frac{10 + 20x + 5x^2}{2} \right) = \frac{5}{2} e^x (2 + 4x + x^2) \][/tex]
3. Determine when [tex]\( f''(x) = 0 \)[/tex]:
- Since [tex]\( e^x \)[/tex] is never zero, we only need to solve:
[tex]\[ 2 + 4x + x^2 = 0 \][/tex]
- This is a quadratic equation. Solving it using the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex], where [tex]\( a = 1 \)[/tex], [tex]\( b = 4 \)[/tex], and [tex]\( c = 2 \)[/tex]:
[tex]\[ x = \frac{-4 \pm \sqrt{4^2 - 4 \cdot 1 \cdot 2}}{2 \cdot 1} = \frac{-4 \pm \sqrt{16 - 8}}{2} = \frac{-4 \pm \sqrt{8}}{2} = \frac{-4 \pm 2\sqrt{2}}{2} = -2 \pm \sqrt{2} \][/tex]
- Therefore, the solutions are:
[tex]\[ x = -2 + \sqrt{2} \quad \text{and} \quad x = -2 - \sqrt{2} \][/tex]
Therefore, the solutions can be approximated to:
[tex]\[ x \approx -3.414 \quad \text{and} \quad x \approx -0.586 \][/tex]
Given these calculations, the value of [tex]\( x \)[/tex] for which the second derivative [tex]\( f''(x) \)[/tex] equals zero is approximately [tex]\( x \approx -3.414 \)[/tex] and [tex]\( x \approx -0.586 \)[/tex], which do not match any of the given multiple-choice options exactly. This might indicate either the choices were not meant to match exactly numerical solutions or an approximation discrepancy. Hence, the choices 0, [tex]\(\ln 5\)[/tex], [tex]\(e^5\)[/tex], and [tex]\(5e\)[/tex] are not correct as none of them approximate the obtained solutions.
1. Compute the first derivative [tex]\( f'(x) \)[/tex]:
- We need to apply the product rule for the differentiation of [tex]\( f(x) \)[/tex]. The product rule states that [tex]\( (uv)' = u'v + uv' \)[/tex], where [tex]\( u = \frac{5}{2} x^2 \)[/tex] and [tex]\( v = e^x \)[/tex].
- The derivative of [tex]\( u = \frac{5}{2} x^2 \)[/tex] is [tex]\( u' = 5x \)[/tex].
- The derivative of [tex]\( v = e^x \)[/tex] is [tex]\( v' = e^x \)[/tex].
- Using the product rule:
[tex]\[ f'(x) = \left( \frac{5}{2} x^2 \right)' e^x + \frac{5}{2} x^2 (e^x)' = 5x e^x + \frac{5}{2} x^2 e^x = e^x \left( 5x + \frac{5}{2} x^2 \right) \][/tex]
[tex]\[ f'(x) = \frac{5}{2} x e^x (2 + x) \][/tex]
2. Compute the second derivative [tex]\( f''(x) \)[/tex]:
- Again, apply the product rule to [tex]\( f'(x) = \frac{5}{2} e^x x (2 + x) \)[/tex]. We treat this as a product of two functions:
- Let [tex]\( u = \frac{5}{2} x (2 + x) \)[/tex] and [tex]\( v = e^x \)[/tex].
- The derivative of [tex]\( u \)[/tex] is:
[tex]\[ u' = \frac{5}{2} (2 + x + x) = \frac{5}{2} (2 + 2x) = \frac{5}{2} \cdot 2 (1 + x) = 5 (1 + x) \][/tex]
- The derivative of [tex]\( v = e^x \)[/tex] is [tex]\( v' = e^x \)[/tex].
- Applying the product rule again:
[tex]\[ f''(x) = \left( \frac{5}{2} x (2 + x) \right)' e^x + \frac{5}{2} x (2 + x) \left( e^x \right)' \][/tex]
[tex]\[ f''(x) = 5 (1 + x) e^x + \frac{5}{2} x (2 + x) e^x = e^x \left( 5 (1 + x) + \frac{5}{2} x (2 + x) \right) \][/tex]
[tex]\[ f''(x) = e^x \left( 5 + 5x + \frac{5}{2}(2x + x^2) \right) = e^x \left( 5 + 5x + 5x + \frac{5}{2} x^2 \right) \][/tex]
[tex]\[ f''(x) = e^x \left( 5 + 10x + \frac{5}{2} x^2 \right) = e^x \left( \frac{10 + 20x + 5x^2}{2} \right) = \frac{5}{2} e^x (2 + 4x + x^2) \][/tex]
3. Determine when [tex]\( f''(x) = 0 \)[/tex]:
- Since [tex]\( e^x \)[/tex] is never zero, we only need to solve:
[tex]\[ 2 + 4x + x^2 = 0 \][/tex]
- This is a quadratic equation. Solving it using the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex], where [tex]\( a = 1 \)[/tex], [tex]\( b = 4 \)[/tex], and [tex]\( c = 2 \)[/tex]:
[tex]\[ x = \frac{-4 \pm \sqrt{4^2 - 4 \cdot 1 \cdot 2}}{2 \cdot 1} = \frac{-4 \pm \sqrt{16 - 8}}{2} = \frac{-4 \pm \sqrt{8}}{2} = \frac{-4 \pm 2\sqrt{2}}{2} = -2 \pm \sqrt{2} \][/tex]
- Therefore, the solutions are:
[tex]\[ x = -2 + \sqrt{2} \quad \text{and} \quad x = -2 - \sqrt{2} \][/tex]
Therefore, the solutions can be approximated to:
[tex]\[ x \approx -3.414 \quad \text{and} \quad x \approx -0.586 \][/tex]
Given these calculations, the value of [tex]\( x \)[/tex] for which the second derivative [tex]\( f''(x) \)[/tex] equals zero is approximately [tex]\( x \approx -3.414 \)[/tex] and [tex]\( x \approx -0.586 \)[/tex], which do not match any of the given multiple-choice options exactly. This might indicate either the choices were not meant to match exactly numerical solutions or an approximation discrepancy. Hence, the choices 0, [tex]\(\ln 5\)[/tex], [tex]\(e^5\)[/tex], and [tex]\(5e\)[/tex] are not correct as none of them approximate the obtained solutions.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.