Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the values of [tex]\( x \)[/tex] for which the second derivative [tex]\( f''(x) \)[/tex] of the function [tex]\( f(x) = \frac{5}{2} x^2 e^x \)[/tex] is zero, let us follow these steps:
1. Compute the first derivative [tex]\( f'(x) \)[/tex]:
- We need to apply the product rule for the differentiation of [tex]\( f(x) \)[/tex]. The product rule states that [tex]\( (uv)' = u'v + uv' \)[/tex], where [tex]\( u = \frac{5}{2} x^2 \)[/tex] and [tex]\( v = e^x \)[/tex].
- The derivative of [tex]\( u = \frac{5}{2} x^2 \)[/tex] is [tex]\( u' = 5x \)[/tex].
- The derivative of [tex]\( v = e^x \)[/tex] is [tex]\( v' = e^x \)[/tex].
- Using the product rule:
[tex]\[ f'(x) = \left( \frac{5}{2} x^2 \right)' e^x + \frac{5}{2} x^2 (e^x)' = 5x e^x + \frac{5}{2} x^2 e^x = e^x \left( 5x + \frac{5}{2} x^2 \right) \][/tex]
[tex]\[ f'(x) = \frac{5}{2} x e^x (2 + x) \][/tex]
2. Compute the second derivative [tex]\( f''(x) \)[/tex]:
- Again, apply the product rule to [tex]\( f'(x) = \frac{5}{2} e^x x (2 + x) \)[/tex]. We treat this as a product of two functions:
- Let [tex]\( u = \frac{5}{2} x (2 + x) \)[/tex] and [tex]\( v = e^x \)[/tex].
- The derivative of [tex]\( u \)[/tex] is:
[tex]\[ u' = \frac{5}{2} (2 + x + x) = \frac{5}{2} (2 + 2x) = \frac{5}{2} \cdot 2 (1 + x) = 5 (1 + x) \][/tex]
- The derivative of [tex]\( v = e^x \)[/tex] is [tex]\( v' = e^x \)[/tex].
- Applying the product rule again:
[tex]\[ f''(x) = \left( \frac{5}{2} x (2 + x) \right)' e^x + \frac{5}{2} x (2 + x) \left( e^x \right)' \][/tex]
[tex]\[ f''(x) = 5 (1 + x) e^x + \frac{5}{2} x (2 + x) e^x = e^x \left( 5 (1 + x) + \frac{5}{2} x (2 + x) \right) \][/tex]
[tex]\[ f''(x) = e^x \left( 5 + 5x + \frac{5}{2}(2x + x^2) \right) = e^x \left( 5 + 5x + 5x + \frac{5}{2} x^2 \right) \][/tex]
[tex]\[ f''(x) = e^x \left( 5 + 10x + \frac{5}{2} x^2 \right) = e^x \left( \frac{10 + 20x + 5x^2}{2} \right) = \frac{5}{2} e^x (2 + 4x + x^2) \][/tex]
3. Determine when [tex]\( f''(x) = 0 \)[/tex]:
- Since [tex]\( e^x \)[/tex] is never zero, we only need to solve:
[tex]\[ 2 + 4x + x^2 = 0 \][/tex]
- This is a quadratic equation. Solving it using the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex], where [tex]\( a = 1 \)[/tex], [tex]\( b = 4 \)[/tex], and [tex]\( c = 2 \)[/tex]:
[tex]\[ x = \frac{-4 \pm \sqrt{4^2 - 4 \cdot 1 \cdot 2}}{2 \cdot 1} = \frac{-4 \pm \sqrt{16 - 8}}{2} = \frac{-4 \pm \sqrt{8}}{2} = \frac{-4 \pm 2\sqrt{2}}{2} = -2 \pm \sqrt{2} \][/tex]
- Therefore, the solutions are:
[tex]\[ x = -2 + \sqrt{2} \quad \text{and} \quad x = -2 - \sqrt{2} \][/tex]
Therefore, the solutions can be approximated to:
[tex]\[ x \approx -3.414 \quad \text{and} \quad x \approx -0.586 \][/tex]
Given these calculations, the value of [tex]\( x \)[/tex] for which the second derivative [tex]\( f''(x) \)[/tex] equals zero is approximately [tex]\( x \approx -3.414 \)[/tex] and [tex]\( x \approx -0.586 \)[/tex], which do not match any of the given multiple-choice options exactly. This might indicate either the choices were not meant to match exactly numerical solutions or an approximation discrepancy. Hence, the choices 0, [tex]\(\ln 5\)[/tex], [tex]\(e^5\)[/tex], and [tex]\(5e\)[/tex] are not correct as none of them approximate the obtained solutions.
1. Compute the first derivative [tex]\( f'(x) \)[/tex]:
- We need to apply the product rule for the differentiation of [tex]\( f(x) \)[/tex]. The product rule states that [tex]\( (uv)' = u'v + uv' \)[/tex], where [tex]\( u = \frac{5}{2} x^2 \)[/tex] and [tex]\( v = e^x \)[/tex].
- The derivative of [tex]\( u = \frac{5}{2} x^2 \)[/tex] is [tex]\( u' = 5x \)[/tex].
- The derivative of [tex]\( v = e^x \)[/tex] is [tex]\( v' = e^x \)[/tex].
- Using the product rule:
[tex]\[ f'(x) = \left( \frac{5}{2} x^2 \right)' e^x + \frac{5}{2} x^2 (e^x)' = 5x e^x + \frac{5}{2} x^2 e^x = e^x \left( 5x + \frac{5}{2} x^2 \right) \][/tex]
[tex]\[ f'(x) = \frac{5}{2} x e^x (2 + x) \][/tex]
2. Compute the second derivative [tex]\( f''(x) \)[/tex]:
- Again, apply the product rule to [tex]\( f'(x) = \frac{5}{2} e^x x (2 + x) \)[/tex]. We treat this as a product of two functions:
- Let [tex]\( u = \frac{5}{2} x (2 + x) \)[/tex] and [tex]\( v = e^x \)[/tex].
- The derivative of [tex]\( u \)[/tex] is:
[tex]\[ u' = \frac{5}{2} (2 + x + x) = \frac{5}{2} (2 + 2x) = \frac{5}{2} \cdot 2 (1 + x) = 5 (1 + x) \][/tex]
- The derivative of [tex]\( v = e^x \)[/tex] is [tex]\( v' = e^x \)[/tex].
- Applying the product rule again:
[tex]\[ f''(x) = \left( \frac{5}{2} x (2 + x) \right)' e^x + \frac{5}{2} x (2 + x) \left( e^x \right)' \][/tex]
[tex]\[ f''(x) = 5 (1 + x) e^x + \frac{5}{2} x (2 + x) e^x = e^x \left( 5 (1 + x) + \frac{5}{2} x (2 + x) \right) \][/tex]
[tex]\[ f''(x) = e^x \left( 5 + 5x + \frac{5}{2}(2x + x^2) \right) = e^x \left( 5 + 5x + 5x + \frac{5}{2} x^2 \right) \][/tex]
[tex]\[ f''(x) = e^x \left( 5 + 10x + \frac{5}{2} x^2 \right) = e^x \left( \frac{10 + 20x + 5x^2}{2} \right) = \frac{5}{2} e^x (2 + 4x + x^2) \][/tex]
3. Determine when [tex]\( f''(x) = 0 \)[/tex]:
- Since [tex]\( e^x \)[/tex] is never zero, we only need to solve:
[tex]\[ 2 + 4x + x^2 = 0 \][/tex]
- This is a quadratic equation. Solving it using the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex], where [tex]\( a = 1 \)[/tex], [tex]\( b = 4 \)[/tex], and [tex]\( c = 2 \)[/tex]:
[tex]\[ x = \frac{-4 \pm \sqrt{4^2 - 4 \cdot 1 \cdot 2}}{2 \cdot 1} = \frac{-4 \pm \sqrt{16 - 8}}{2} = \frac{-4 \pm \sqrt{8}}{2} = \frac{-4 \pm 2\sqrt{2}}{2} = -2 \pm \sqrt{2} \][/tex]
- Therefore, the solutions are:
[tex]\[ x = -2 + \sqrt{2} \quad \text{and} \quad x = -2 - \sqrt{2} \][/tex]
Therefore, the solutions can be approximated to:
[tex]\[ x \approx -3.414 \quad \text{and} \quad x \approx -0.586 \][/tex]
Given these calculations, the value of [tex]\( x \)[/tex] for which the second derivative [tex]\( f''(x) \)[/tex] equals zero is approximately [tex]\( x \approx -3.414 \)[/tex] and [tex]\( x \approx -0.586 \)[/tex], which do not match any of the given multiple-choice options exactly. This might indicate either the choices were not meant to match exactly numerical solutions or an approximation discrepancy. Hence, the choices 0, [tex]\(\ln 5\)[/tex], [tex]\(e^5\)[/tex], and [tex]\(5e\)[/tex] are not correct as none of them approximate the obtained solutions.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.