Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Sure, let's solve the given expression step-by-step to understand the simplification process.
We start with the expression:
[tex]\[ \frac{X^{p-q+1} \times X^{q-r+1} \times X^{ p -p+1}}{X^3} \][/tex]
### Step 1: Combine the Exponents in the Numerator
First, we need to simplify the expression in the numerator. Since we have a product of terms with the same base [tex]\(X\)[/tex], we can add their exponents:
[tex]\[ X^{p-q+1} \times X^{q-r+1} \times X^{p-p+1} = X^{(p-q+1) + (q-r+1) + (p-p+1)} \][/tex]
### Step 2: Simplify the Exponents in the Numerator
Let's combine and simplify the exponents:
[tex]\[ (p - q + 1) + (q - r + 1) + (p - p + 1) \][/tex]
Combine like terms:
[tex]\[ = p - q + q - r + p - p + 1 + 1 + 1 \][/tex]
Notice that [tex]\( -q \)[/tex] and [tex]\( +q \)[/tex] cancel out, and [tex]\( +p \)[/tex] and [tex]\( -p \)[/tex] cancel out:
[tex]\[ = p - r + 3 \][/tex]
So the expression simplifies to:
[tex]\[ \frac{X^{p-r+3}}{X^3} \][/tex]
### Step 3: Simplify the Entire Expression
We now have a single term in the numerator and a single term in the denominator, both with base [tex]\(X\)[/tex]. We can subtract the exponent in the denominator from the exponent in the numerator:
[tex]\[ = X^{(p-r+3) - 3} \][/tex]
Simplify the exponent:
[tex]\[ = X^{p-r} \][/tex]
### Final Answer
So the given expression simplifies to:
[tex]\[ X^{p - r} \][/tex]
This is the simplified form of the given expression.
We start with the expression:
[tex]\[ \frac{X^{p-q+1} \times X^{q-r+1} \times X^{ p -p+1}}{X^3} \][/tex]
### Step 1: Combine the Exponents in the Numerator
First, we need to simplify the expression in the numerator. Since we have a product of terms with the same base [tex]\(X\)[/tex], we can add their exponents:
[tex]\[ X^{p-q+1} \times X^{q-r+1} \times X^{p-p+1} = X^{(p-q+1) + (q-r+1) + (p-p+1)} \][/tex]
### Step 2: Simplify the Exponents in the Numerator
Let's combine and simplify the exponents:
[tex]\[ (p - q + 1) + (q - r + 1) + (p - p + 1) \][/tex]
Combine like terms:
[tex]\[ = p - q + q - r + p - p + 1 + 1 + 1 \][/tex]
Notice that [tex]\( -q \)[/tex] and [tex]\( +q \)[/tex] cancel out, and [tex]\( +p \)[/tex] and [tex]\( -p \)[/tex] cancel out:
[tex]\[ = p - r + 3 \][/tex]
So the expression simplifies to:
[tex]\[ \frac{X^{p-r+3}}{X^3} \][/tex]
### Step 3: Simplify the Entire Expression
We now have a single term in the numerator and a single term in the denominator, both with base [tex]\(X\)[/tex]. We can subtract the exponent in the denominator from the exponent in the numerator:
[tex]\[ = X^{(p-r+3) - 3} \][/tex]
Simplify the exponent:
[tex]\[ = X^{p-r} \][/tex]
### Final Answer
So the given expression simplifies to:
[tex]\[ X^{p - r} \][/tex]
This is the simplified form of the given expression.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.