Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Sure, let's find the pair of supplementary angles step by step.
1. Definition of Supplementary Angles: Supplementary angles are two angles whose sum adds up to 180 degrees.
2. Setup the equation:
Suppose we have two angles, [tex]\(x\)[/tex] degrees and [tex]\(\frac{x}{4}\)[/tex] degrees. According to the definition of supplementary angles:
[tex]\[ x + \frac{x}{4} = 180 \][/tex]
3. Combine Like Terms:
To solve for [tex]\(x\)[/tex], first combine the terms on the left-hand side:
[tex]\[ x + \frac{x}{4} = 180 \][/tex]
Express [tex]\(x\)[/tex] with a common denominator:
[tex]\[ \frac{4x}{4} + \frac{x}{4} = 180 \][/tex]
[tex]\[ \frac{4x + x}{4} = 180 \][/tex]
[tex]\[ \frac{5x}{4} = 180 \][/tex]
4. Isolate [tex]\(x\)[/tex]:
To find the value of [tex]\(x\)[/tex], multiply both sides of the equation by 4:
[tex]\[ 5x = 720 \][/tex]
Then divide by 5:
[tex]\[ x = \frac{720}{5} \][/tex]
[tex]\[ x = 144 \][/tex]
5. Find the Pair of Angles:
Now that we have [tex]\(x = 144\)[/tex], we can find the two angles. The first angle is:
[tex]\[ x = 144^\circ \][/tex]
The second angle is:
[tex]\[ \frac{x}{4} = \frac{144}{4} = 36^\circ \][/tex]
6. Validate the Solution:
Finally, let's check if their sum is indeed 180 degrees:
[tex]\[ 144^\circ + 36^\circ = 180^\circ \][/tex]
Therefore, the pair of supplementary angles are:
[tex]\[ 144^\circ \text{ and } 36^\circ \][/tex]
1. Definition of Supplementary Angles: Supplementary angles are two angles whose sum adds up to 180 degrees.
2. Setup the equation:
Suppose we have two angles, [tex]\(x\)[/tex] degrees and [tex]\(\frac{x}{4}\)[/tex] degrees. According to the definition of supplementary angles:
[tex]\[ x + \frac{x}{4} = 180 \][/tex]
3. Combine Like Terms:
To solve for [tex]\(x\)[/tex], first combine the terms on the left-hand side:
[tex]\[ x + \frac{x}{4} = 180 \][/tex]
Express [tex]\(x\)[/tex] with a common denominator:
[tex]\[ \frac{4x}{4} + \frac{x}{4} = 180 \][/tex]
[tex]\[ \frac{4x + x}{4} = 180 \][/tex]
[tex]\[ \frac{5x}{4} = 180 \][/tex]
4. Isolate [tex]\(x\)[/tex]:
To find the value of [tex]\(x\)[/tex], multiply both sides of the equation by 4:
[tex]\[ 5x = 720 \][/tex]
Then divide by 5:
[tex]\[ x = \frac{720}{5} \][/tex]
[tex]\[ x = 144 \][/tex]
5. Find the Pair of Angles:
Now that we have [tex]\(x = 144\)[/tex], we can find the two angles. The first angle is:
[tex]\[ x = 144^\circ \][/tex]
The second angle is:
[tex]\[ \frac{x}{4} = \frac{144}{4} = 36^\circ \][/tex]
6. Validate the Solution:
Finally, let's check if their sum is indeed 180 degrees:
[tex]\[ 144^\circ + 36^\circ = 180^\circ \][/tex]
Therefore, the pair of supplementary angles are:
[tex]\[ 144^\circ \text{ and } 36^\circ \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.