Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Sure, let's find the pair of supplementary angles step by step.
1. Definition of Supplementary Angles: Supplementary angles are two angles whose sum adds up to 180 degrees.
2. Setup the equation:
Suppose we have two angles, [tex]\(x\)[/tex] degrees and [tex]\(\frac{x}{4}\)[/tex] degrees. According to the definition of supplementary angles:
[tex]\[ x + \frac{x}{4} = 180 \][/tex]
3. Combine Like Terms:
To solve for [tex]\(x\)[/tex], first combine the terms on the left-hand side:
[tex]\[ x + \frac{x}{4} = 180 \][/tex]
Express [tex]\(x\)[/tex] with a common denominator:
[tex]\[ \frac{4x}{4} + \frac{x}{4} = 180 \][/tex]
[tex]\[ \frac{4x + x}{4} = 180 \][/tex]
[tex]\[ \frac{5x}{4} = 180 \][/tex]
4. Isolate [tex]\(x\)[/tex]:
To find the value of [tex]\(x\)[/tex], multiply both sides of the equation by 4:
[tex]\[ 5x = 720 \][/tex]
Then divide by 5:
[tex]\[ x = \frac{720}{5} \][/tex]
[tex]\[ x = 144 \][/tex]
5. Find the Pair of Angles:
Now that we have [tex]\(x = 144\)[/tex], we can find the two angles. The first angle is:
[tex]\[ x = 144^\circ \][/tex]
The second angle is:
[tex]\[ \frac{x}{4} = \frac{144}{4} = 36^\circ \][/tex]
6. Validate the Solution:
Finally, let's check if their sum is indeed 180 degrees:
[tex]\[ 144^\circ + 36^\circ = 180^\circ \][/tex]
Therefore, the pair of supplementary angles are:
[tex]\[ 144^\circ \text{ and } 36^\circ \][/tex]
1. Definition of Supplementary Angles: Supplementary angles are two angles whose sum adds up to 180 degrees.
2. Setup the equation:
Suppose we have two angles, [tex]\(x\)[/tex] degrees and [tex]\(\frac{x}{4}\)[/tex] degrees. According to the definition of supplementary angles:
[tex]\[ x + \frac{x}{4} = 180 \][/tex]
3. Combine Like Terms:
To solve for [tex]\(x\)[/tex], first combine the terms on the left-hand side:
[tex]\[ x + \frac{x}{4} = 180 \][/tex]
Express [tex]\(x\)[/tex] with a common denominator:
[tex]\[ \frac{4x}{4} + \frac{x}{4} = 180 \][/tex]
[tex]\[ \frac{4x + x}{4} = 180 \][/tex]
[tex]\[ \frac{5x}{4} = 180 \][/tex]
4. Isolate [tex]\(x\)[/tex]:
To find the value of [tex]\(x\)[/tex], multiply both sides of the equation by 4:
[tex]\[ 5x = 720 \][/tex]
Then divide by 5:
[tex]\[ x = \frac{720}{5} \][/tex]
[tex]\[ x = 144 \][/tex]
5. Find the Pair of Angles:
Now that we have [tex]\(x = 144\)[/tex], we can find the two angles. The first angle is:
[tex]\[ x = 144^\circ \][/tex]
The second angle is:
[tex]\[ \frac{x}{4} = \frac{144}{4} = 36^\circ \][/tex]
6. Validate the Solution:
Finally, let's check if their sum is indeed 180 degrees:
[tex]\[ 144^\circ + 36^\circ = 180^\circ \][/tex]
Therefore, the pair of supplementary angles are:
[tex]\[ 144^\circ \text{ and } 36^\circ \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.