Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To factorize the expression completely:
[tex]\[ 21a^2 + 28ab \][/tex]
we will follow these steps:
1. Identify the common factors for the terms:
- The first term is [tex]\(21a^2\)[/tex]. The factors of [tex]\(21a^2\)[/tex] are [tex]\(21\)[/tex] and [tex]\(a^2\)[/tex], which can be further factored to [tex]\(3 \times 7 \times a \times a\)[/tex].
- The second term is [tex]\(28ab\)[/tex]. The factors of [tex]\(28ab\)[/tex] are [tex]\(28\)[/tex] and [tex]\(ab\)[/tex], which can be further factored to [tex]\(4 \times 7 \times a \times b\)[/tex].
2. Find the greatest common factor (GCF):
- Both terms have a common factor [tex]\(7a\)[/tex].
- Thus, the GCF of [tex]\(21a^2\)[/tex] and [tex]\(28ab\)[/tex] is [tex]\(7a\)[/tex].
3. Factor out the greatest common factor:
- Divide each term by the GCF [tex]\(7a\)[/tex]:
[tex]\[ 21a^2 \div 7a = 3a \][/tex]
[tex]\[ 28ab \div 7a = 4b \][/tex]
4. Write the expression as a product of the GCF and the simplified terms:
- After factoring out [tex]\(7a\)[/tex], the expression becomes:
[tex]\[ 21a^2 + 28ab = 7a(3a + 4b) \][/tex]
So, the completely factorized form of the given expression [tex]\(21a^2 + 28ab\)[/tex] is:
[tex]\[ 7a(3a + 4b) \][/tex]
[tex]\[ 21a^2 + 28ab \][/tex]
we will follow these steps:
1. Identify the common factors for the terms:
- The first term is [tex]\(21a^2\)[/tex]. The factors of [tex]\(21a^2\)[/tex] are [tex]\(21\)[/tex] and [tex]\(a^2\)[/tex], which can be further factored to [tex]\(3 \times 7 \times a \times a\)[/tex].
- The second term is [tex]\(28ab\)[/tex]. The factors of [tex]\(28ab\)[/tex] are [tex]\(28\)[/tex] and [tex]\(ab\)[/tex], which can be further factored to [tex]\(4 \times 7 \times a \times b\)[/tex].
2. Find the greatest common factor (GCF):
- Both terms have a common factor [tex]\(7a\)[/tex].
- Thus, the GCF of [tex]\(21a^2\)[/tex] and [tex]\(28ab\)[/tex] is [tex]\(7a\)[/tex].
3. Factor out the greatest common factor:
- Divide each term by the GCF [tex]\(7a\)[/tex]:
[tex]\[ 21a^2 \div 7a = 3a \][/tex]
[tex]\[ 28ab \div 7a = 4b \][/tex]
4. Write the expression as a product of the GCF and the simplified terms:
- After factoring out [tex]\(7a\)[/tex], the expression becomes:
[tex]\[ 21a^2 + 28ab = 7a(3a + 4b) \][/tex]
So, the completely factorized form of the given expression [tex]\(21a^2 + 28ab\)[/tex] is:
[tex]\[ 7a(3a + 4b) \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.