Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Let's work through the algebraic expression step-by-step:
We are given the expression [tex]\(3a \cdot a^2 \times 4a^5 \times a \cdot x^4 \times a^2\)[/tex].
First, let's address the constants and coefficients:
- The constants are [tex]\(3\)[/tex] and [tex]\(4\)[/tex].
- We multiply these constants together: [tex]\(3 \times 4 = 12\)[/tex].
Next, let's consider the terms involving [tex]\(a\)[/tex]:
- We have [tex]\(a\)[/tex] with exponents: [tex]\(a^1\)[/tex], [tex]\(a^2\)[/tex], [tex]\(a^5\)[/tex], [tex]\(a^1\)[/tex], and [tex]\(a^2\)[/tex].
- To combine these, we add the exponents together:
[tex]\[ 1 + 2 + 5 + 1 + 2 = 11 \][/tex]
Now, let's consider the terms involving [tex]\(x\)[/tex]:
- We have [tex]\(x\)[/tex] with exponent [tex]\(x^4\)[/tex].
- Since there is only one term involving [tex]\(x\)[/tex], the exponent remains [tex]\(4\)[/tex].
Putting it all together:
- The combined coefficient is [tex]\(12\)[/tex].
- The combined power of [tex]\(a\)[/tex] is [tex]\(11\)[/tex].
- The combined power of [tex]\(x\)[/tex] is [tex]\(4\)[/tex].
Therefore, the simplified expression is:
[tex]\[ 12a^{11}x^{4} \][/tex]
This gives us the final answer as [tex]\(12a^{11}x^4\)[/tex].
We are given the expression [tex]\(3a \cdot a^2 \times 4a^5 \times a \cdot x^4 \times a^2\)[/tex].
First, let's address the constants and coefficients:
- The constants are [tex]\(3\)[/tex] and [tex]\(4\)[/tex].
- We multiply these constants together: [tex]\(3 \times 4 = 12\)[/tex].
Next, let's consider the terms involving [tex]\(a\)[/tex]:
- We have [tex]\(a\)[/tex] with exponents: [tex]\(a^1\)[/tex], [tex]\(a^2\)[/tex], [tex]\(a^5\)[/tex], [tex]\(a^1\)[/tex], and [tex]\(a^2\)[/tex].
- To combine these, we add the exponents together:
[tex]\[ 1 + 2 + 5 + 1 + 2 = 11 \][/tex]
Now, let's consider the terms involving [tex]\(x\)[/tex]:
- We have [tex]\(x\)[/tex] with exponent [tex]\(x^4\)[/tex].
- Since there is only one term involving [tex]\(x\)[/tex], the exponent remains [tex]\(4\)[/tex].
Putting it all together:
- The combined coefficient is [tex]\(12\)[/tex].
- The combined power of [tex]\(a\)[/tex] is [tex]\(11\)[/tex].
- The combined power of [tex]\(x\)[/tex] is [tex]\(4\)[/tex].
Therefore, the simplified expression is:
[tex]\[ 12a^{11}x^{4} \][/tex]
This gives us the final answer as [tex]\(12a^{11}x^4\)[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.