Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Sure, I can help you with that.
### Part (a)
To find the gradient (slope) of the line joining points [tex]\( A (-1,2) \)[/tex] and [tex]\( B (3,-2) \)[/tex], we use the formula for the gradient between two points [tex]\( (x_1, y_1) \)[/tex] and [tex]\( (x_2, y_2) \)[/tex]:
[tex]\[ \text{Gradient} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Plugging in the coordinates of points [tex]\( A \)[/tex] and [tex]\( B \)[/tex]:
[tex]\[ x_1 = -1, \; y_1 = 2 \][/tex]
[tex]\[ x_2 = 3, \; y_2 = -2 \][/tex]
So the gradient is:
[tex]\[ \text{Gradient}_{AB} = \frac{-2 - 2}{3 - (-1)} = \frac{-2 - 2}{3 + 1} = \frac{-4}{4} = -1.0 \][/tex]
Thus, the gradient of the line joining points [tex]\( A \)[/tex] and [tex]\( B \)[/tex] is [tex]\( -1.0 \)[/tex].
### Part (b)
To find the gradient of the line joining points [tex]\( C (0, -1) \)[/tex] and [tex]\( D (4, 1) \)[/tex], we again use the formula for the gradient:
[tex]\[ \text{Gradient} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Plugging in the coordinates of points [tex]\( C \)[/tex] and [tex]\( D \)[/tex]:
[tex]\[ x_1 = 0, \; y_1 = -1 \][/tex]
[tex]\[ x_2 = 4, \; y_2 = 1 \][/tex]
So the gradient is:
[tex]\[ \text{Gradient}_{CD} = \frac{1 - (-1)}{4 - 0} = \frac{1 + 1}{4} = \frac{2}{4} = 0.5 \][/tex]
Thus, the gradient of the line joining points [tex]\( C \)[/tex] and [tex]\( D \)[/tex] is [tex]\( 0.5 \)[/tex].
So the gradients are:
a) The gradient of the line joining [tex]\( A \)[/tex] and [tex]\( B \)[/tex] is [tex]\( -1.0 \)[/tex]
b) The gradient of the line joining [tex]\( C \)[/tex] and [tex]\( D \)[/tex] is [tex]\( 0.5 \)[/tex]
### Part (a)
To find the gradient (slope) of the line joining points [tex]\( A (-1,2) \)[/tex] and [tex]\( B (3,-2) \)[/tex], we use the formula for the gradient between two points [tex]\( (x_1, y_1) \)[/tex] and [tex]\( (x_2, y_2) \)[/tex]:
[tex]\[ \text{Gradient} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Plugging in the coordinates of points [tex]\( A \)[/tex] and [tex]\( B \)[/tex]:
[tex]\[ x_1 = -1, \; y_1 = 2 \][/tex]
[tex]\[ x_2 = 3, \; y_2 = -2 \][/tex]
So the gradient is:
[tex]\[ \text{Gradient}_{AB} = \frac{-2 - 2}{3 - (-1)} = \frac{-2 - 2}{3 + 1} = \frac{-4}{4} = -1.0 \][/tex]
Thus, the gradient of the line joining points [tex]\( A \)[/tex] and [tex]\( B \)[/tex] is [tex]\( -1.0 \)[/tex].
### Part (b)
To find the gradient of the line joining points [tex]\( C (0, -1) \)[/tex] and [tex]\( D (4, 1) \)[/tex], we again use the formula for the gradient:
[tex]\[ \text{Gradient} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Plugging in the coordinates of points [tex]\( C \)[/tex] and [tex]\( D \)[/tex]:
[tex]\[ x_1 = 0, \; y_1 = -1 \][/tex]
[tex]\[ x_2 = 4, \; y_2 = 1 \][/tex]
So the gradient is:
[tex]\[ \text{Gradient}_{CD} = \frac{1 - (-1)}{4 - 0} = \frac{1 + 1}{4} = \frac{2}{4} = 0.5 \][/tex]
Thus, the gradient of the line joining points [tex]\( C \)[/tex] and [tex]\( D \)[/tex] is [tex]\( 0.5 \)[/tex].
So the gradients are:
a) The gradient of the line joining [tex]\( A \)[/tex] and [tex]\( B \)[/tex] is [tex]\( -1.0 \)[/tex]
b) The gradient of the line joining [tex]\( C \)[/tex] and [tex]\( D \)[/tex] is [tex]\( 0.5 \)[/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.