Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
We have the formula for the [tex]\( n \)[/tex]th term given by:
[tex]\[ a_n = \frac{1}{2n - 1} \][/tex]
We need to find the smallest integer [tex]\( n \)[/tex] for which [tex]\( a_n \)[/tex] is less than 0.01. This means we need to solve the inequality:
[tex]\[ \frac{1}{2n - 1} < 0.01 \][/tex]
To do this, we first find the condition on the denominator:
[tex]\[ 2n - 1 > \frac{1}{0.01} \][/tex]
Simplify [tex]\(\frac{1}{0.01}\)[/tex]:
[tex]\[ \frac{1}{0.01} = 100 \][/tex]
So, we have:
[tex]\[ 2n - 1 > 100 \][/tex]
Next, we solve for [tex]\( n \)[/tex]:
[tex]\[ 2n > 101 \][/tex]
[tex]\[ n > \frac{101}{2} \][/tex]
[tex]\[ n > 50.5 \][/tex]
Since [tex]\( n \)[/tex] must be an integer, we take the next whole number greater than 50.5, which is [tex]\( n = 51 \)[/tex].
To verify, we calculate the 51st term:
[tex]\[ a_{51} = \frac{1}{2 \cdot 51 - 1} \][/tex]
[tex]\[ a_{51} = \frac{1}{101} \][/tex]
[tex]\[ a_{51} = 0.009900990099009901 \][/tex]
Since 0.009900990099009901 is indeed less than 0.01, [tex]\( n = 51 \)[/tex] is the first term that meets the condition [tex]\( \frac{1}{2n - 1} < 0.01 \)[/tex].
Thus, the first term less than 0.01 is the 51st term.
[tex]\[ a_n = \frac{1}{2n - 1} \][/tex]
We need to find the smallest integer [tex]\( n \)[/tex] for which [tex]\( a_n \)[/tex] is less than 0.01. This means we need to solve the inequality:
[tex]\[ \frac{1}{2n - 1} < 0.01 \][/tex]
To do this, we first find the condition on the denominator:
[tex]\[ 2n - 1 > \frac{1}{0.01} \][/tex]
Simplify [tex]\(\frac{1}{0.01}\)[/tex]:
[tex]\[ \frac{1}{0.01} = 100 \][/tex]
So, we have:
[tex]\[ 2n - 1 > 100 \][/tex]
Next, we solve for [tex]\( n \)[/tex]:
[tex]\[ 2n > 101 \][/tex]
[tex]\[ n > \frac{101}{2} \][/tex]
[tex]\[ n > 50.5 \][/tex]
Since [tex]\( n \)[/tex] must be an integer, we take the next whole number greater than 50.5, which is [tex]\( n = 51 \)[/tex].
To verify, we calculate the 51st term:
[tex]\[ a_{51} = \frac{1}{2 \cdot 51 - 1} \][/tex]
[tex]\[ a_{51} = \frac{1}{101} \][/tex]
[tex]\[ a_{51} = 0.009900990099009901 \][/tex]
Since 0.009900990099009901 is indeed less than 0.01, [tex]\( n = 51 \)[/tex] is the first term that meets the condition [tex]\( \frac{1}{2n - 1} < 0.01 \)[/tex].
Thus, the first term less than 0.01 is the 51st term.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.