Answered

Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

E.g. 2: A projectile is fired from the edge of a [tex][tex]$50 \, m$[/tex][/tex] cliff with an initial velocity of [tex]$150 \, m/s$[/tex] at an angle of [tex]30^{\circ}[/tex] to the horizontal. Neglecting air resistance, find:

a) The horizontal distance (in meters) from the point of launch to where the projectile strikes the ground.

b) The greatest elevation above the ground.

Sagot :

Sure! Let's break this problem down into steps:

### Given Data
- Initial velocity ([tex]\(v_0\)[/tex]): 150 m/s
- Angle ([tex]\(\theta\)[/tex]) with the horizontal: [tex]\(30^\circ\)[/tex]
- Height of the cliff ([tex]\(h_0\)[/tex]): 50 meters
- Acceleration due to gravity ([tex]\(g\)[/tex]): [tex]\(9.81 \, \text{m/s}^2\)[/tex]

### Conversion of Angle to Radians
First, let's convert the angle from degrees to radians since trigonometric functions in physics typically use radians.
[tex]\[ \theta_\text{rad} = \frac{30 \times \pi}{180} = \frac{\pi}{6} \][/tex]

### Decomposition of Initial Velocity
The initial velocity is split into two components:
- Horizontal component ([tex]\(v_{0x}\)[/tex]):
[tex]\[ v_{0x} = v_0 \cos(\theta_\text{rad}) = 150 \cos\left(\frac{\pi}{6}\right) = 150 \times \frac{\sqrt{3}}{2} \approx 129.9 \, \text{m/s} \][/tex]

- Vertical component ([tex]\(v_{0y}\)[/tex]):
[tex]\[ v_{0y} = v_0 \sin(\theta_\text{rad}) = 150 \sin\left(\frac{\pi}{6}\right) = 150 \times \frac{1}{2} = 75 \, \text{m/s} \][/tex]

### Part (a): Time of Flight to the Ground
To find the time ([tex]\(t\)[/tex]) at which the projectile hits the ground, we use the vertical motion equation:
[tex]\[ h = h_0 + v_{0y} t - \frac{1}{2} g t^2 \][/tex]
Given that the final height [tex]\(h = 0\)[/tex] (ground level), we rewrite it as a quadratic equation:
[tex]\[ 0 = 50 + 75t - \frac{1}{2} \cdot 9.81 t^2 \][/tex]

This simplifies to:
[tex]\[ 4.905 t^2 - 75t - 50 = 0 \][/tex]

To solve this quadratic equation, we use the quadratic formula:
[tex]\[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Where [tex]\(a = -4.905\)[/tex], [tex]\(b = 75\)[/tex], [tex]\(c = 50\)[/tex]:

[tex]\[ t = \frac{-75 \pm \sqrt{75^2 - 4(-4.905)(50)}}{2(-4.905)} \][/tex]

Calculating the discriminant:
[tex]\[ 75^2 - 4 \cdot (-4.905) \cdot 50 = 5625 + 981 = 6606 \][/tex]

Thus:
[tex]\[ t = \frac{-75 \pm \sqrt{6606}}{-9.81} \][/tex]

Solving for the two values:
[tex]\[ t_1 = \frac{-75 + 81.26}{-9.81} \approx -0.64 \, \text{s} \quad \text{(not meaningful as time cannot be negative)} \][/tex]
[tex]\[ t_2 = \frac{-75 - 81.26}{-9.81} \approx 15.93 \, \text{s} \][/tex]

The projectile takes approximately [tex]\(15.93\)[/tex] seconds to hit the ground.

### Horizontal Distance
To find the horizontal distance traveled ([tex]\(d\)[/tex]):
[tex]\[ d = v_{0x} \times t = 129.9 \, \text{m/s} \times 15.93 \, \text{s} \approx 2069.42 \, \text{m} \][/tex]

### Part (b): Greatest Elevation Above the Ground
The greatest elevation occurs at the peak of the trajectory.
The time to reach maximum height ([tex]\(t_\text{max}\)[/tex]) is when the vertical velocity component becomes zero:
[tex]\[ t_\text{max} = \frac{v_{0y}}{g} = \frac{75}{9.81} \approx 7.65 \, \text{s} \][/tex]

Max height ([tex]\(H\)[/tex]) above the cliff:
[tex]\[ H = h_0 + v_{0y} t_\text{max} - \frac{1}{2} g t_\text{max}^2 \][/tex]
[tex]\[ H = 50 + 75 \cdot 7.65 - \frac{1}{2} \cdot 9.81 \cdot 7.65^2 \][/tex]
[tex]\[ H = 50 + 573.75 - 286.05 \approx 336.7 \, \text{m} \][/tex]

Therefore, the greatest elevation above the ground is approximately [tex]\(336.7\)[/tex] meters.