Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

Simplify the expression:

[tex]\[ \left(a + \frac{1}{3a}\right)^2 \][/tex]


Sagot :

To expand the given expression [tex]\(\left(a + \frac{1}{3a}\right)^2\)[/tex], we can follow these specific steps in algebra:

1. Understand the expression: We start with [tex]\(\left(a + \frac{1}{3a}\right)^2\)[/tex]. This indicates that we need to square the binomial expression [tex]\(a + \frac{1}{3a}\)[/tex].

2. Apply the binomial expansion formula: Recall that [tex]\((x + y)^2 = x^2 + 2xy + y^2\)[/tex]. In our case, [tex]\(x = a\)[/tex] and [tex]\(y = \frac{1}{3a}\)[/tex].

3. Square the first term: We square the first term [tex]\(a\)[/tex]:
[tex]\[ a^2 \][/tex]

4. Square the second term: We square the second term [tex]\(\frac{1}{3a}\)[/tex]:
[tex]\[ \left(\frac{1}{3a}\right)^2 = \frac{1^2}{(3a)^2} = \frac{1}{9a^2} \][/tex]

5. Multiply the two terms and double the product: We find the product of [tex]\(a\)[/tex] and [tex]\(\frac{1}{3a}\)[/tex], and then double it:
[tex]\[ 2 \cdot a \cdot \frac{1}{3a} = 2 \cdot \frac{1}{3} = \frac{2}{3} \][/tex]

6. Combine all parts together: Summing these results, we get:
[tex]\[ a^2 + \frac{2}{3} + \frac{1}{9a^2} \][/tex]

Hence, the expanded form of [tex]\(\left(a + \frac{1}{3a}\right)^2\)[/tex] is:
[tex]\[ a^2 + \frac{2}{3} + \frac{1}{9a^2} \][/tex]