Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To expand the given expression [tex]\(\left(a + \frac{1}{3a}\right)^2\)[/tex], we can follow these specific steps in algebra:
1. Understand the expression: We start with [tex]\(\left(a + \frac{1}{3a}\right)^2\)[/tex]. This indicates that we need to square the binomial expression [tex]\(a + \frac{1}{3a}\)[/tex].
2. Apply the binomial expansion formula: Recall that [tex]\((x + y)^2 = x^2 + 2xy + y^2\)[/tex]. In our case, [tex]\(x = a\)[/tex] and [tex]\(y = \frac{1}{3a}\)[/tex].
3. Square the first term: We square the first term [tex]\(a\)[/tex]:
[tex]\[ a^2 \][/tex]
4. Square the second term: We square the second term [tex]\(\frac{1}{3a}\)[/tex]:
[tex]\[ \left(\frac{1}{3a}\right)^2 = \frac{1^2}{(3a)^2} = \frac{1}{9a^2} \][/tex]
5. Multiply the two terms and double the product: We find the product of [tex]\(a\)[/tex] and [tex]\(\frac{1}{3a}\)[/tex], and then double it:
[tex]\[ 2 \cdot a \cdot \frac{1}{3a} = 2 \cdot \frac{1}{3} = \frac{2}{3} \][/tex]
6. Combine all parts together: Summing these results, we get:
[tex]\[ a^2 + \frac{2}{3} + \frac{1}{9a^2} \][/tex]
Hence, the expanded form of [tex]\(\left(a + \frac{1}{3a}\right)^2\)[/tex] is:
[tex]\[ a^2 + \frac{2}{3} + \frac{1}{9a^2} \][/tex]
1. Understand the expression: We start with [tex]\(\left(a + \frac{1}{3a}\right)^2\)[/tex]. This indicates that we need to square the binomial expression [tex]\(a + \frac{1}{3a}\)[/tex].
2. Apply the binomial expansion formula: Recall that [tex]\((x + y)^2 = x^2 + 2xy + y^2\)[/tex]. In our case, [tex]\(x = a\)[/tex] and [tex]\(y = \frac{1}{3a}\)[/tex].
3. Square the first term: We square the first term [tex]\(a\)[/tex]:
[tex]\[ a^2 \][/tex]
4. Square the second term: We square the second term [tex]\(\frac{1}{3a}\)[/tex]:
[tex]\[ \left(\frac{1}{3a}\right)^2 = \frac{1^2}{(3a)^2} = \frac{1}{9a^2} \][/tex]
5. Multiply the two terms and double the product: We find the product of [tex]\(a\)[/tex] and [tex]\(\frac{1}{3a}\)[/tex], and then double it:
[tex]\[ 2 \cdot a \cdot \frac{1}{3a} = 2 \cdot \frac{1}{3} = \frac{2}{3} \][/tex]
6. Combine all parts together: Summing these results, we get:
[tex]\[ a^2 + \frac{2}{3} + \frac{1}{9a^2} \][/tex]
Hence, the expanded form of [tex]\(\left(a + \frac{1}{3a}\right)^2\)[/tex] is:
[tex]\[ a^2 + \frac{2}{3} + \frac{1}{9a^2} \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.