Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Sure! Let's solve this step by step.
1. Determine the Sum of the Interior Angles of a Pentagon:
- A pentagon has 5 sides.
- The sum of the interior angles of a polygon with [tex]\( n \)[/tex] sides is given by the formula:
[tex]\[ (n-2) \times 180^\circ \][/tex]
- For a pentagon ([tex]\( n = 5 \)[/tex]):
[tex]\[ (5-2) \times 180^\circ = 3 \times 180^\circ = 540^\circ \][/tex]
2. Sum of the Known Angles:
- You are given two angles: [tex]\( 98^\circ \)[/tex] and [tex]\( 118^\circ \)[/tex].
- Sum of these two angles:
[tex]\[ 98^\circ + 118^\circ = 216^\circ \][/tex]
3. Sum of the Remaining Three Equal Angles:
- Since the sum of all interior angles is [tex]\( 540^\circ \)[/tex] and we already know that two of the angles sum up to [tex]\( 216^\circ \)[/tex]:
[tex]\[ \text{Sum of the remaining three angles} = 540^\circ - 216^\circ = 324^\circ \][/tex]
4. Calculate Each of the Three Equal Angles:
- Since the remaining three angles are equal, each of the three equal angles will be:
[tex]\[ \frac{324^\circ}{3} = 108^\circ \][/tex]
Therefore, the remaining three equal angles in the pentagon are each [tex]\( 108^\circ \)[/tex].
1. Determine the Sum of the Interior Angles of a Pentagon:
- A pentagon has 5 sides.
- The sum of the interior angles of a polygon with [tex]\( n \)[/tex] sides is given by the formula:
[tex]\[ (n-2) \times 180^\circ \][/tex]
- For a pentagon ([tex]\( n = 5 \)[/tex]):
[tex]\[ (5-2) \times 180^\circ = 3 \times 180^\circ = 540^\circ \][/tex]
2. Sum of the Known Angles:
- You are given two angles: [tex]\( 98^\circ \)[/tex] and [tex]\( 118^\circ \)[/tex].
- Sum of these two angles:
[tex]\[ 98^\circ + 118^\circ = 216^\circ \][/tex]
3. Sum of the Remaining Three Equal Angles:
- Since the sum of all interior angles is [tex]\( 540^\circ \)[/tex] and we already know that two of the angles sum up to [tex]\( 216^\circ \)[/tex]:
[tex]\[ \text{Sum of the remaining three angles} = 540^\circ - 216^\circ = 324^\circ \][/tex]
4. Calculate Each of the Three Equal Angles:
- Since the remaining three angles are equal, each of the three equal angles will be:
[tex]\[ \frac{324^\circ}{3} = 108^\circ \][/tex]
Therefore, the remaining three equal angles in the pentagon are each [tex]\( 108^\circ \)[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.