Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To calculate the resistance of a copper wire, we can use the formula for electrical resistance:
[tex]\[ R = \rho \times \frac{L}{A} \][/tex]
where:
- [tex]\( R \)[/tex] is the resistance,
- [tex]\( \rho \)[/tex] is the resistivity of the material,
- [tex]\( L \)[/tex] is the length of the wire,
- [tex]\( A \)[/tex] is the area of cross-section.
Let's go through the solution step by step:
1. Given Values:
- Length of the wire ([tex]\( L \)[/tex]) = 1000 meters.
- Area of cross-section ([tex]\( A \)[/tex]) = 2 mm².
- Resistivity of copper ([tex]\( \rho \)[/tex]) = [tex]\( 1.6 \times 10^{-8} \)[/tex] ohm meters (Ω·m).
2. Convert Area to Square Meters:
The given area of cross-section is in square millimeters (mm²). To use it in the formula, we need to convert it to square meters (m²).
[tex]\[ 1 \text{ mm}^2 = 1 \times 10^{-6} \text{ m}^2 \][/tex]
Therefore,
[tex]\[ 2 \text{ mm}^2 = 2 \times 10^{-6} \text{ m}^2 \][/tex]
3. Apply the Values to the Formula:
Now we substitute the given values into the formula for resistance:
[tex]\[ R = \rho \times \frac{L}{A} = (1.6 \times 10^{-8} \, \Omega \cdot \text{m}) \times \frac{1000 \text{ m}}{2 \times 10^{-6} \text{ m}^2} \][/tex]
4. Simplify the Expression:
[tex]\[ R = 1.6 \times 10^{-8} \, \Omega \cdot \text{m} \times \frac{1000}{2 \times 10^{-6} \text{ m}^2} \][/tex]
Simplify the fraction inside:
[tex]\[ \frac{1000}{2 \times 10^{-6}} = \frac{1000}{0.000002} = 500000000 \][/tex]
Hence, the calculation becomes:
[tex]\[ R = 1.6 \times 10^{-8} \, \Omega \cdot \text{m} \times 500000000 \][/tex]
5. Calculate the Product:
[tex]\[ R = 8.0 \, \Omega \][/tex]
Therefore, the resistance of the copper wire with the given dimensions and resistivity is [tex]\( 8.0 \)[/tex] ohms.
[tex]\[ R = \rho \times \frac{L}{A} \][/tex]
where:
- [tex]\( R \)[/tex] is the resistance,
- [tex]\( \rho \)[/tex] is the resistivity of the material,
- [tex]\( L \)[/tex] is the length of the wire,
- [tex]\( A \)[/tex] is the area of cross-section.
Let's go through the solution step by step:
1. Given Values:
- Length of the wire ([tex]\( L \)[/tex]) = 1000 meters.
- Area of cross-section ([tex]\( A \)[/tex]) = 2 mm².
- Resistivity of copper ([tex]\( \rho \)[/tex]) = [tex]\( 1.6 \times 10^{-8} \)[/tex] ohm meters (Ω·m).
2. Convert Area to Square Meters:
The given area of cross-section is in square millimeters (mm²). To use it in the formula, we need to convert it to square meters (m²).
[tex]\[ 1 \text{ mm}^2 = 1 \times 10^{-6} \text{ m}^2 \][/tex]
Therefore,
[tex]\[ 2 \text{ mm}^2 = 2 \times 10^{-6} \text{ m}^2 \][/tex]
3. Apply the Values to the Formula:
Now we substitute the given values into the formula for resistance:
[tex]\[ R = \rho \times \frac{L}{A} = (1.6 \times 10^{-8} \, \Omega \cdot \text{m}) \times \frac{1000 \text{ m}}{2 \times 10^{-6} \text{ m}^2} \][/tex]
4. Simplify the Expression:
[tex]\[ R = 1.6 \times 10^{-8} \, \Omega \cdot \text{m} \times \frac{1000}{2 \times 10^{-6} \text{ m}^2} \][/tex]
Simplify the fraction inside:
[tex]\[ \frac{1000}{2 \times 10^{-6}} = \frac{1000}{0.000002} = 500000000 \][/tex]
Hence, the calculation becomes:
[tex]\[ R = 1.6 \times 10^{-8} \, \Omega \cdot \text{m} \times 500000000 \][/tex]
5. Calculate the Product:
[tex]\[ R = 8.0 \, \Omega \][/tex]
Therefore, the resistance of the copper wire with the given dimensions and resistivity is [tex]\( 8.0 \)[/tex] ohms.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.