Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To find the value of [tex]\( n(A \cap B) \)[/tex], we need to use the principles of set theory as well as the given values.
1. Identify the Given Values:
- The size of the universal set [tex]\( U \)[/tex]: [tex]\( n(U) = 1001 \)[/tex]
- The size of set [tex]\( A \)[/tex]: [tex]\( n(A) = 60 \)[/tex]
- The size of set [tex]\( B \)[/tex]: [tex]\( n(B) = 40 \)[/tex]
- The size of the complement of the union of sets [tex]\( A \)[/tex] and [tex]\( B \)[/tex]: [tex]\( n(\overline{A \cup B}) = 5 \)[/tex]
2. Calculate the Size of the Union [tex]\( A \cup B \)[/tex]:
The complement of [tex]\( A \cup B \)[/tex] consists of all elements that are not in [tex]\( A \cup B \)[/tex]. Therefore, the size of the union [tex]\( A \cup B \)[/tex] can be derived from the size of the universal set [tex]\( U \)[/tex] minus the size of its complement.
[tex]\[ n(A \cup B) = n(U) - n(\overline{A \cup B}) \][/tex]
Substitute the given values:
[tex]\[ n(A \cup B) = 1001 - 5 = 996 \][/tex]
3. Apply the Principle of Inclusion-Exclusion:
The principle of inclusion-exclusion for the union of two sets states that:
[tex]\[ n(A \cup B) = n(A) + n(B) - n(A \cap B) \][/tex]
Rearrange this equation to isolate [tex]\( n(A \cap B) \)[/tex]:
[tex]\[ n(A \cap B) = n(A) + n(B) - n(A \cup B) \][/tex]
4. Substitute the Known Values:
Substitute the calculated value for [tex]\( n(A \cup B) \)[/tex] and the given values for [tex]\( n(A) \)[/tex] and [tex]\( n(B) \)[/tex]:
[tex]\[ n(A \cap B) = 60 + 40 - 996 \][/tex]
5. Perform the Calculation:
[tex]\[ n(A \cap B) = 100 - 996 = -896 \][/tex]
Thus, the value of [tex]\( n(A \cap B) \)[/tex] is [tex]\(-896\)[/tex].
1. Identify the Given Values:
- The size of the universal set [tex]\( U \)[/tex]: [tex]\( n(U) = 1001 \)[/tex]
- The size of set [tex]\( A \)[/tex]: [tex]\( n(A) = 60 \)[/tex]
- The size of set [tex]\( B \)[/tex]: [tex]\( n(B) = 40 \)[/tex]
- The size of the complement of the union of sets [tex]\( A \)[/tex] and [tex]\( B \)[/tex]: [tex]\( n(\overline{A \cup B}) = 5 \)[/tex]
2. Calculate the Size of the Union [tex]\( A \cup B \)[/tex]:
The complement of [tex]\( A \cup B \)[/tex] consists of all elements that are not in [tex]\( A \cup B \)[/tex]. Therefore, the size of the union [tex]\( A \cup B \)[/tex] can be derived from the size of the universal set [tex]\( U \)[/tex] minus the size of its complement.
[tex]\[ n(A \cup B) = n(U) - n(\overline{A \cup B}) \][/tex]
Substitute the given values:
[tex]\[ n(A \cup B) = 1001 - 5 = 996 \][/tex]
3. Apply the Principle of Inclusion-Exclusion:
The principle of inclusion-exclusion for the union of two sets states that:
[tex]\[ n(A \cup B) = n(A) + n(B) - n(A \cap B) \][/tex]
Rearrange this equation to isolate [tex]\( n(A \cap B) \)[/tex]:
[tex]\[ n(A \cap B) = n(A) + n(B) - n(A \cup B) \][/tex]
4. Substitute the Known Values:
Substitute the calculated value for [tex]\( n(A \cup B) \)[/tex] and the given values for [tex]\( n(A) \)[/tex] and [tex]\( n(B) \)[/tex]:
[tex]\[ n(A \cap B) = 60 + 40 - 996 \][/tex]
5. Perform the Calculation:
[tex]\[ n(A \cap B) = 100 - 996 = -896 \][/tex]
Thus, the value of [tex]\( n(A \cap B) \)[/tex] is [tex]\(-896\)[/tex].
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.