Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To find the value of [tex]\( n(A \cap B) \)[/tex], we need to use the principles of set theory as well as the given values.
1. Identify the Given Values:
- The size of the universal set [tex]\( U \)[/tex]: [tex]\( n(U) = 1001 \)[/tex]
- The size of set [tex]\( A \)[/tex]: [tex]\( n(A) = 60 \)[/tex]
- The size of set [tex]\( B \)[/tex]: [tex]\( n(B) = 40 \)[/tex]
- The size of the complement of the union of sets [tex]\( A \)[/tex] and [tex]\( B \)[/tex]: [tex]\( n(\overline{A \cup B}) = 5 \)[/tex]
2. Calculate the Size of the Union [tex]\( A \cup B \)[/tex]:
The complement of [tex]\( A \cup B \)[/tex] consists of all elements that are not in [tex]\( A \cup B \)[/tex]. Therefore, the size of the union [tex]\( A \cup B \)[/tex] can be derived from the size of the universal set [tex]\( U \)[/tex] minus the size of its complement.
[tex]\[ n(A \cup B) = n(U) - n(\overline{A \cup B}) \][/tex]
Substitute the given values:
[tex]\[ n(A \cup B) = 1001 - 5 = 996 \][/tex]
3. Apply the Principle of Inclusion-Exclusion:
The principle of inclusion-exclusion for the union of two sets states that:
[tex]\[ n(A \cup B) = n(A) + n(B) - n(A \cap B) \][/tex]
Rearrange this equation to isolate [tex]\( n(A \cap B) \)[/tex]:
[tex]\[ n(A \cap B) = n(A) + n(B) - n(A \cup B) \][/tex]
4. Substitute the Known Values:
Substitute the calculated value for [tex]\( n(A \cup B) \)[/tex] and the given values for [tex]\( n(A) \)[/tex] and [tex]\( n(B) \)[/tex]:
[tex]\[ n(A \cap B) = 60 + 40 - 996 \][/tex]
5. Perform the Calculation:
[tex]\[ n(A \cap B) = 100 - 996 = -896 \][/tex]
Thus, the value of [tex]\( n(A \cap B) \)[/tex] is [tex]\(-896\)[/tex].
1. Identify the Given Values:
- The size of the universal set [tex]\( U \)[/tex]: [tex]\( n(U) = 1001 \)[/tex]
- The size of set [tex]\( A \)[/tex]: [tex]\( n(A) = 60 \)[/tex]
- The size of set [tex]\( B \)[/tex]: [tex]\( n(B) = 40 \)[/tex]
- The size of the complement of the union of sets [tex]\( A \)[/tex] and [tex]\( B \)[/tex]: [tex]\( n(\overline{A \cup B}) = 5 \)[/tex]
2. Calculate the Size of the Union [tex]\( A \cup B \)[/tex]:
The complement of [tex]\( A \cup B \)[/tex] consists of all elements that are not in [tex]\( A \cup B \)[/tex]. Therefore, the size of the union [tex]\( A \cup B \)[/tex] can be derived from the size of the universal set [tex]\( U \)[/tex] minus the size of its complement.
[tex]\[ n(A \cup B) = n(U) - n(\overline{A \cup B}) \][/tex]
Substitute the given values:
[tex]\[ n(A \cup B) = 1001 - 5 = 996 \][/tex]
3. Apply the Principle of Inclusion-Exclusion:
The principle of inclusion-exclusion for the union of two sets states that:
[tex]\[ n(A \cup B) = n(A) + n(B) - n(A \cap B) \][/tex]
Rearrange this equation to isolate [tex]\( n(A \cap B) \)[/tex]:
[tex]\[ n(A \cap B) = n(A) + n(B) - n(A \cup B) \][/tex]
4. Substitute the Known Values:
Substitute the calculated value for [tex]\( n(A \cup B) \)[/tex] and the given values for [tex]\( n(A) \)[/tex] and [tex]\( n(B) \)[/tex]:
[tex]\[ n(A \cap B) = 60 + 40 - 996 \][/tex]
5. Perform the Calculation:
[tex]\[ n(A \cap B) = 100 - 996 = -896 \][/tex]
Thus, the value of [tex]\( n(A \cap B) \)[/tex] is [tex]\(-896\)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.