Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Sure! Let's address each question step-by-step.
### Q2. Coefficient of [tex]\( x^2 \)[/tex] and leading term in the polynomial [tex]\( 5-7 x^2+7 x^3+\sqrt{11} x^5 \)[/tex]:
1. Identify the coefficient of [tex]\( x^2 \)[/tex]:
- In the polynomial [tex]\( 5 - 7 x^2 + 7 x^3 + \sqrt{11} x^5 \)[/tex], we look at each term.
- The term involving [tex]\( x^2 \)[/tex] is [tex]\( -7 x^2 \)[/tex].
- The coefficient of [tex]\( x^2 \)[/tex] is therefore [tex]\( -7 \)[/tex].
2. Determine the leading term:
- The leading term of a polynomial is the term with the highest degree (the highest power of [tex]\( x \)[/tex]).
- In the polynomial [tex]\( 5 - 7 x^2 + 7 x^3 + \sqrt{11} x^5 \)[/tex], the term with the highest degree is [tex]\( \sqrt{11} x^5 \)[/tex].
- Therefore, the leading term is [tex]\( \sqrt{11} x^5 \)[/tex].
Hence, the coefficient of [tex]\( x^2 \)[/tex] is [tex]\( -7 \)[/tex] and the leading term is [tex]\( \sqrt{11} x^5 \)[/tex].
### Q3. Find the roots of the polynomial equation [tex]\( (x+3)(x+2)=0 \)[/tex]:
1. Setting the polynomial equal to zero:
- We start with the equation [tex]\( (x + 3)(x + 2) = 0 \)[/tex].
2. Using the Zero Product Property:
- The Zero Product Property states that if the product of two factors is zero, then at least one of the factors must be zero.
- So, we can set each factor equal to zero: [tex]\( x + 3 = 0 \)[/tex] and [tex]\( x + 2 = 0 \)[/tex].
3. Solving for [tex]\( x \)[/tex] in each equation:
- For [tex]\( x + 3 = 0 \)[/tex]:
[tex]\[ x + 3 = 0 \implies x = -3 \][/tex]
- For [tex]\( x + 2 = 0 \)[/tex]:
[tex]\[ x + 2 = 0 \implies x = -2 \][/tex]
Therefore, the roots of the polynomial equation [tex]\( (x + 3)(x + 2) = 0 \)[/tex] are [tex]\( x = -3 \)[/tex] and [tex]\( x = -2 \)[/tex].
In summary:
- The coefficient of [tex]\( x^2 \)[/tex] in the polynomial [tex]\( 5 - 7 x^2 + 7 x^3 + \sqrt{11} x^5 \)[/tex] is [tex]\( -7 \)[/tex].
- The leading term in the polynomial is [tex]\( \sqrt{11} x^5 \)[/tex].
- The roots of the polynomial equation [tex]\( (x + 3)(x + 2) = 0 \)[/tex] are [tex]\( x = -3 \)[/tex] and [tex]\( x = -2 \)[/tex].
### Q2. Coefficient of [tex]\( x^2 \)[/tex] and leading term in the polynomial [tex]\( 5-7 x^2+7 x^3+\sqrt{11} x^5 \)[/tex]:
1. Identify the coefficient of [tex]\( x^2 \)[/tex]:
- In the polynomial [tex]\( 5 - 7 x^2 + 7 x^3 + \sqrt{11} x^5 \)[/tex], we look at each term.
- The term involving [tex]\( x^2 \)[/tex] is [tex]\( -7 x^2 \)[/tex].
- The coefficient of [tex]\( x^2 \)[/tex] is therefore [tex]\( -7 \)[/tex].
2. Determine the leading term:
- The leading term of a polynomial is the term with the highest degree (the highest power of [tex]\( x \)[/tex]).
- In the polynomial [tex]\( 5 - 7 x^2 + 7 x^3 + \sqrt{11} x^5 \)[/tex], the term with the highest degree is [tex]\( \sqrt{11} x^5 \)[/tex].
- Therefore, the leading term is [tex]\( \sqrt{11} x^5 \)[/tex].
Hence, the coefficient of [tex]\( x^2 \)[/tex] is [tex]\( -7 \)[/tex] and the leading term is [tex]\( \sqrt{11} x^5 \)[/tex].
### Q3. Find the roots of the polynomial equation [tex]\( (x+3)(x+2)=0 \)[/tex]:
1. Setting the polynomial equal to zero:
- We start with the equation [tex]\( (x + 3)(x + 2) = 0 \)[/tex].
2. Using the Zero Product Property:
- The Zero Product Property states that if the product of two factors is zero, then at least one of the factors must be zero.
- So, we can set each factor equal to zero: [tex]\( x + 3 = 0 \)[/tex] and [tex]\( x + 2 = 0 \)[/tex].
3. Solving for [tex]\( x \)[/tex] in each equation:
- For [tex]\( x + 3 = 0 \)[/tex]:
[tex]\[ x + 3 = 0 \implies x = -3 \][/tex]
- For [tex]\( x + 2 = 0 \)[/tex]:
[tex]\[ x + 2 = 0 \implies x = -2 \][/tex]
Therefore, the roots of the polynomial equation [tex]\( (x + 3)(x + 2) = 0 \)[/tex] are [tex]\( x = -3 \)[/tex] and [tex]\( x = -2 \)[/tex].
In summary:
- The coefficient of [tex]\( x^2 \)[/tex] in the polynomial [tex]\( 5 - 7 x^2 + 7 x^3 + \sqrt{11} x^5 \)[/tex] is [tex]\( -7 \)[/tex].
- The leading term in the polynomial is [tex]\( \sqrt{11} x^5 \)[/tex].
- The roots of the polynomial equation [tex]\( (x + 3)(x + 2) = 0 \)[/tex] are [tex]\( x = -3 \)[/tex] and [tex]\( x = -2 \)[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.