Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To analyze the relationship between the number of miles driven and the number of gallons left in the tank, we can use a linear regression model.
Given the data points:
| Miles Driven | Gallons in Tank |
|--------------|-----------------|
| 27 | 13 |
| 65 | 12 |
| 83 | 11 |
| 109 | 10 |
| 142 | 9 |
| 175 | 8 |
### Step 1: Determining the Linear Regression Model
The linear regression model can be represented by the equation:
[tex]\[ y = mx + b \][/tex]
where [tex]\( y \)[/tex] is the miles driven, [tex]\( x \)[/tex] is the gallons in the tank, [tex]\( m \)[/tex] is the slope, and [tex]\( b \)[/tex] is the intercept.
For this specific case:
- The slope ([tex]\( m \)[/tex]) is [tex]\(-28.49\)[/tex]
- The intercept ([tex]\( b \)[/tex]) is [tex]\(399.27\)[/tex]
Thus, the linear regression equation is:
[tex]\[ y = -28.49x + 399.27 \][/tex]
### Step 2: Finding the Correlation Coefficient
The correlation coefficient ([tex]\( r \)[/tex]) measures the strength and direction of a linear relationship between two variables.
For this data, the correlation coefficient is:
[tex]\[ r = -0.996 \][/tex]
This value indicates a very strong negative linear relationship between the miles driven and the gallons in the tank.
### Step 3: Determining the Strength of the Model
To determine the strength of the model, we can use the absolute value of the correlation coefficient ([tex]\( |r| \)[/tex]).
- If [tex]\( |r| > 0.8 \)[/tex], the model is considered strong.
- If [tex]\( 0.5 < |r| \leq 0.8 \)[/tex], the model is considered moderate.
- If [tex]\( |r| \leq 0.5 \)[/tex], the model is considered weak.
Given that [tex]\( |r| = 0.996 \)[/tex], which is greater than 0.8, the strength of the model is:
[tex]\[ \text{strong} \][/tex]
### Summary
- Linear regression model: [tex]\( y = -28.49x + 399.27 \)[/tex]
- Correlation coefficient: [tex]\( r = -0.996 \)[/tex]
- Strength of the model: strong
Given the data points:
| Miles Driven | Gallons in Tank |
|--------------|-----------------|
| 27 | 13 |
| 65 | 12 |
| 83 | 11 |
| 109 | 10 |
| 142 | 9 |
| 175 | 8 |
### Step 1: Determining the Linear Regression Model
The linear regression model can be represented by the equation:
[tex]\[ y = mx + b \][/tex]
where [tex]\( y \)[/tex] is the miles driven, [tex]\( x \)[/tex] is the gallons in the tank, [tex]\( m \)[/tex] is the slope, and [tex]\( b \)[/tex] is the intercept.
For this specific case:
- The slope ([tex]\( m \)[/tex]) is [tex]\(-28.49\)[/tex]
- The intercept ([tex]\( b \)[/tex]) is [tex]\(399.27\)[/tex]
Thus, the linear regression equation is:
[tex]\[ y = -28.49x + 399.27 \][/tex]
### Step 2: Finding the Correlation Coefficient
The correlation coefficient ([tex]\( r \)[/tex]) measures the strength and direction of a linear relationship between two variables.
For this data, the correlation coefficient is:
[tex]\[ r = -0.996 \][/tex]
This value indicates a very strong negative linear relationship between the miles driven and the gallons in the tank.
### Step 3: Determining the Strength of the Model
To determine the strength of the model, we can use the absolute value of the correlation coefficient ([tex]\( |r| \)[/tex]).
- If [tex]\( |r| > 0.8 \)[/tex], the model is considered strong.
- If [tex]\( 0.5 < |r| \leq 0.8 \)[/tex], the model is considered moderate.
- If [tex]\( |r| \leq 0.5 \)[/tex], the model is considered weak.
Given that [tex]\( |r| = 0.996 \)[/tex], which is greater than 0.8, the strength of the model is:
[tex]\[ \text{strong} \][/tex]
### Summary
- Linear regression model: [tex]\( y = -28.49x + 399.27 \)[/tex]
- Correlation coefficient: [tex]\( r = -0.996 \)[/tex]
- Strength of the model: strong
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.