Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine how many moles of oxygen are in a malachite sample containing [tex]\(2.3 \times 10^{25}\)[/tex] atoms of hydrogen, we can follow a step-by-step process:
1. Identify the number of hydrogen atoms:
The sample contains [tex]\(2.3 \times 10^{25}\)[/tex] atoms of hydrogen.
2. Convert atoms of hydrogen to moles of hydrogen:
To convert the number of atoms to moles, we use Avogadro's number, which is [tex]\(6.022 \times 10^{23}\)[/tex] atoms per mole. The formula to convert atoms to moles is:
[tex]\[ \text{moles of hydrogen} = \frac{\text{number of atoms of hydrogen}}{\text{Avogadro's number}} \][/tex]
Plugging in the given values:
[tex]\[ \text{moles of hydrogen} = \frac{2.3 \times 10^{25}}{6.022 \times 10^{23}} = 38.19329126536035 \, \text{moles H} \][/tex]
3. Determine the internal ratio of hydrogen to oxygen in malachite:
The internal ratio of hydrogen to oxygen in malachite is given by:
[tex]\[ \frac{2 \text{ moles H}}{5 \text{ moles O}} \][/tex]
This means for every 2 moles of hydrogen, there are 5 moles of oxygen.
4. Calculate the moles of oxygen using the hydrogen to oxygen ratio:
To find the moles of oxygen, we need to multiply the moles of hydrogen by the ratio of oxygen to hydrogen:
[tex]\[ \text{moles of oxygen} = \text{moles of hydrogen} \times \frac{5 \text{ moles O}}{2 \text{ moles H}} \][/tex]
Given that we have 38.19329126536035 moles of hydrogen, we can calculate:
[tex]\[ \text{moles of oxygen} = 38.19329126536035 \times \frac{5}{2} = 95.48322816340088 \, \text{moles O} \][/tex]
Therefore, in a malachite sample containing [tex]\(2.3 \times 10^{25}\)[/tex] atoms of hydrogen, there are approximately [tex]\(95.48322816340088\)[/tex] moles of oxygen.
1. Identify the number of hydrogen atoms:
The sample contains [tex]\(2.3 \times 10^{25}\)[/tex] atoms of hydrogen.
2. Convert atoms of hydrogen to moles of hydrogen:
To convert the number of atoms to moles, we use Avogadro's number, which is [tex]\(6.022 \times 10^{23}\)[/tex] atoms per mole. The formula to convert atoms to moles is:
[tex]\[ \text{moles of hydrogen} = \frac{\text{number of atoms of hydrogen}}{\text{Avogadro's number}} \][/tex]
Plugging in the given values:
[tex]\[ \text{moles of hydrogen} = \frac{2.3 \times 10^{25}}{6.022 \times 10^{23}} = 38.19329126536035 \, \text{moles H} \][/tex]
3. Determine the internal ratio of hydrogen to oxygen in malachite:
The internal ratio of hydrogen to oxygen in malachite is given by:
[tex]\[ \frac{2 \text{ moles H}}{5 \text{ moles O}} \][/tex]
This means for every 2 moles of hydrogen, there are 5 moles of oxygen.
4. Calculate the moles of oxygen using the hydrogen to oxygen ratio:
To find the moles of oxygen, we need to multiply the moles of hydrogen by the ratio of oxygen to hydrogen:
[tex]\[ \text{moles of oxygen} = \text{moles of hydrogen} \times \frac{5 \text{ moles O}}{2 \text{ moles H}} \][/tex]
Given that we have 38.19329126536035 moles of hydrogen, we can calculate:
[tex]\[ \text{moles of oxygen} = 38.19329126536035 \times \frac{5}{2} = 95.48322816340088 \, \text{moles O} \][/tex]
Therefore, in a malachite sample containing [tex]\(2.3 \times 10^{25}\)[/tex] atoms of hydrogen, there are approximately [tex]\(95.48322816340088\)[/tex] moles of oxygen.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.