Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

If [tex]\sin \theta = \frac{12}{13}[/tex] and [tex]\cos \theta = \frac{5}{13}[/tex], find the value of [tex]\sec^2 \theta - \tan^2 \theta[/tex].

Sagot :

Here's a step-by-step solution to find the value of [tex]\( \sec^2 \theta - \tan^2 \theta \)[/tex] given [tex]\( \sin \theta = \frac{12}{13} \)[/tex] and [tex]\( \cos \theta = \frac{5}{13} \)[/tex]:

1. Compute [tex]\(\sec \theta\)[/tex]:
[tex]\[ \sec \theta = \frac{1}{\cos \theta} = \frac{1}{\frac{5}{13}} = \frac{13}{5} \][/tex]

2. Calculate [tex]\(\sec^2 \theta\)[/tex]:
[tex]\[ \sec^2 \theta = \left( \frac{13}{5} \right)^2 = \frac{169}{25} = 6.76 \][/tex]

3. Compute [tex]\(\tan \theta\)[/tex]:
[tex]\[ \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\frac{12}{13}}{\frac{5}{13}} = \frac{12}{5} \][/tex]

4. Calculate [tex]\(\tan^2 \theta\)[/tex]:
[tex]\[ \tan^2 \theta = \left( \frac{12}{5} \right)^2 = \frac{144}{25} = 5.76 \][/tex]

5. Find the value of [tex]\(\sec^2 \theta - \tan^2 \theta\)[/tex]:
[tex]\[ \sec^2 \theta - \tan^2 \theta = 6.76 - 5.76 = 1 \][/tex]

Therefore, the value of [tex]\( \sec^2 \theta - \tan^2 \theta \)[/tex] is [tex]\( 1 \)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.