Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the correlation coefficient and the strength of the model, we will follow these steps:
1. List the data:
[tex]\[ \text{Hours Spent Studying} = [1, 2, 3, 4, 5] \][/tex]
[tex]\[ \text{Test Scores} = [72, 80, 90, 82, 95] \][/tex]
2. Calculate the mean of the hours and scores:
[tex]\[ \text{Mean of Hours} = \frac{1 + 2 + 3 + 4 + 5}{5} = 3.0 \][/tex]
[tex]\[ \text{Mean of Scores} = \frac{72 + 80 + 90 + 82 + 95}{5} = 83.8 \][/tex]
3. Calculate the numerator for the correlation coefficient:
The numerator is obtained by summing the products of the differences of each value from their respective means:
[tex]\[ \sum ((\text{Hours}_i - \text{Mean Hours}) \cdot (\text{Scores}_i - \text{Mean Scores})) \][/tex]
[tex]\[ = [(1-3.0)(72-83.8) + (2-3.0)(80-83.8) + (3-3.0)(90-83.8) + (4-3.0)(82-83.8) + (5-3.0)(95-83.8)] \][/tex]
[tex]\[ = 48.0 \][/tex]
4. Calculate the denominator for the correlation coefficient:
The denominator is the product of the square root of the sum of squared differences from the mean for hours and scores:
[tex]\[ \sqrt{\sum (\text{Hours}_i - \text{Mean Hours})^2 \cdot \sum (\text{Scores}_i - \text{Mean Scores})^2} \][/tex]
[tex]\[ = \sqrt{[(1-3.0)^2 + (2-3.0)^2 + (3-3.0)^2 + (4-3.0)^2 + (5-3.0)^2] \cdot [(72-83.8)^2 + (80-83.8)^2 + (90-83.8)^2 + (82-83.8)^2 + (95-83.8)^2]} \][/tex]
[tex]\[ = 56.63920903402518 \][/tex]
5. Calculate the correlation coefficient (Pearson's r):
[tex]\[ r = \frac{\text{Numerator}}{\text{Denominator}} = \frac{48.0}{56.63920903402518} = 0.8474694618557385 \][/tex]
6. Evaluate the strength of the model:
- A correlation coefficient [tex]\( |r| > 0.7 \)[/tex] is considered a "strong" correlation.
- Since [tex]\( |0.8474694618557385| \approx 0.847 \)[/tex], which is greater than 0.7, the strength of the model is "strong."
Answers:
1. The correlation coefficient is [tex]\( 0.8474694618557385 \)[/tex].
2. The strength of the model is "strong."
1. List the data:
[tex]\[ \text{Hours Spent Studying} = [1, 2, 3, 4, 5] \][/tex]
[tex]\[ \text{Test Scores} = [72, 80, 90, 82, 95] \][/tex]
2. Calculate the mean of the hours and scores:
[tex]\[ \text{Mean of Hours} = \frac{1 + 2 + 3 + 4 + 5}{5} = 3.0 \][/tex]
[tex]\[ \text{Mean of Scores} = \frac{72 + 80 + 90 + 82 + 95}{5} = 83.8 \][/tex]
3. Calculate the numerator for the correlation coefficient:
The numerator is obtained by summing the products of the differences of each value from their respective means:
[tex]\[ \sum ((\text{Hours}_i - \text{Mean Hours}) \cdot (\text{Scores}_i - \text{Mean Scores})) \][/tex]
[tex]\[ = [(1-3.0)(72-83.8) + (2-3.0)(80-83.8) + (3-3.0)(90-83.8) + (4-3.0)(82-83.8) + (5-3.0)(95-83.8)] \][/tex]
[tex]\[ = 48.0 \][/tex]
4. Calculate the denominator for the correlation coefficient:
The denominator is the product of the square root of the sum of squared differences from the mean for hours and scores:
[tex]\[ \sqrt{\sum (\text{Hours}_i - \text{Mean Hours})^2 \cdot \sum (\text{Scores}_i - \text{Mean Scores})^2} \][/tex]
[tex]\[ = \sqrt{[(1-3.0)^2 + (2-3.0)^2 + (3-3.0)^2 + (4-3.0)^2 + (5-3.0)^2] \cdot [(72-83.8)^2 + (80-83.8)^2 + (90-83.8)^2 + (82-83.8)^2 + (95-83.8)^2]} \][/tex]
[tex]\[ = 56.63920903402518 \][/tex]
5. Calculate the correlation coefficient (Pearson's r):
[tex]\[ r = \frac{\text{Numerator}}{\text{Denominator}} = \frac{48.0}{56.63920903402518} = 0.8474694618557385 \][/tex]
6. Evaluate the strength of the model:
- A correlation coefficient [tex]\( |r| > 0.7 \)[/tex] is considered a "strong" correlation.
- Since [tex]\( |0.8474694618557385| \approx 0.847 \)[/tex], which is greater than 0.7, the strength of the model is "strong."
Answers:
1. The correlation coefficient is [tex]\( 0.8474694618557385 \)[/tex].
2. The strength of the model is "strong."
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.