Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the probabilities, we'll start by calculating the corresponding Z-scores for the given values.
### Part a
#### Given:
- Population mean ([tex]\(\mu\)[/tex]) = 218.2
- Population standard deviation ([tex]\(\sigma\)[/tex]) = 81.6
- Lower bound ([tex]\(X_{lower}\)[/tex]) = 207.3
- Upper bound ([tex]\(X_{upper}\)[/tex]) = 208.5
We need to find the Z-scores for both bounds using the formula:
[tex]\[ Z = \frac{X - \mu}{\sigma} \][/tex]
#### Steps:
1. Calculate the Z-score for the lower bound ([tex]\(X_{lower} = 207.3\)[/tex]):
[tex]\[ Z_{lower} = \frac{207.3 - 218.2}{81.6} = -0.1336 \][/tex]
2. Calculate the Z-score for the upper bound ([tex]\(X_{upper} = 208.5\)[/tex]):
[tex]\[ Z_{upper} = \frac{208.5 - 218.2}{81.6} = -0.1189 \][/tex]
3. Use the standard normal distribution (Z-table) to find the probabilities corresponding to [tex]\( Z_{lower} \)[/tex] and [tex]\( Z_{upper} \)[/tex].
4. The desired probability is the difference between these probabilities:
[tex]\[ P(207.3 < X < 208.5) = P(Z_{upper}) - P(Z_{lower}) \][/tex]
After calculating, we get:
[tex]\[ P(207.3 < X < 208.5) = 0.0058 \][/tex]
### Part b
#### Given:
- Sample size ([tex]\(n\)[/tex]) = 183
- Population mean ([tex]\(\mu\)[/tex]) = 218.2
- Population standard deviation ([tex]\(\sigma\)[/tex]) = 81.6
- Lower bound for mean ([tex]\(M_{lower}\)[/tex]) = 207.3
- Upper bound for mean ([tex]\(M_{upper}\)[/tex]) = 208.5
Since we are dealing with a sample mean, we need to use the standard error of the mean ([tex]\(\text{SE}\)[/tex]) instead of the population standard deviation. The standard error is calculated as:
[tex]\[ \text{SE} = \frac{\sigma}{\sqrt{n}} \][/tex]
#### Steps:
1. Calculate the standard error:
[tex]\[ \text{SE} = \frac{81.6}{\sqrt{183}} \approx 6.026 \][/tex]
2. Convert the lower bound and upper bound of the sample mean to Z-scores:
[tex]\[ Z_{lower} = \frac{207.3 - 218.2}{6.026} = -1.807 \][/tex]
[tex]\[ Z_{upper} = \frac{208.5 - 218.2}{6.026} = -1.608 \][/tex]
3. Use the standard normal distribution (Z-table) to find the probabilities corresponding to [tex]\( Z_{lower} \)[/tex] and [tex]\( Z_{upper} \)[/tex].
4. The desired probability is the difference between these probabilities:
[tex]\[ P(207.3 < M < 208.5) = P(Z_{upper}) - P(Z_{lower}) \][/tex]
After calculating, we get:
[tex]\[ P(207.3 < M < 208.5) = 0.0185 \][/tex]
### Conclusion
- Part a: [tex]\( P(207.3 < X < 208.5) = 0.0058 \)[/tex]
- Part b: [tex]\( P(207.3 < M < 208.5) = 0.0185 \)[/tex]
### Part a
#### Given:
- Population mean ([tex]\(\mu\)[/tex]) = 218.2
- Population standard deviation ([tex]\(\sigma\)[/tex]) = 81.6
- Lower bound ([tex]\(X_{lower}\)[/tex]) = 207.3
- Upper bound ([tex]\(X_{upper}\)[/tex]) = 208.5
We need to find the Z-scores for both bounds using the formula:
[tex]\[ Z = \frac{X - \mu}{\sigma} \][/tex]
#### Steps:
1. Calculate the Z-score for the lower bound ([tex]\(X_{lower} = 207.3\)[/tex]):
[tex]\[ Z_{lower} = \frac{207.3 - 218.2}{81.6} = -0.1336 \][/tex]
2. Calculate the Z-score for the upper bound ([tex]\(X_{upper} = 208.5\)[/tex]):
[tex]\[ Z_{upper} = \frac{208.5 - 218.2}{81.6} = -0.1189 \][/tex]
3. Use the standard normal distribution (Z-table) to find the probabilities corresponding to [tex]\( Z_{lower} \)[/tex] and [tex]\( Z_{upper} \)[/tex].
4. The desired probability is the difference between these probabilities:
[tex]\[ P(207.3 < X < 208.5) = P(Z_{upper}) - P(Z_{lower}) \][/tex]
After calculating, we get:
[tex]\[ P(207.3 < X < 208.5) = 0.0058 \][/tex]
### Part b
#### Given:
- Sample size ([tex]\(n\)[/tex]) = 183
- Population mean ([tex]\(\mu\)[/tex]) = 218.2
- Population standard deviation ([tex]\(\sigma\)[/tex]) = 81.6
- Lower bound for mean ([tex]\(M_{lower}\)[/tex]) = 207.3
- Upper bound for mean ([tex]\(M_{upper}\)[/tex]) = 208.5
Since we are dealing with a sample mean, we need to use the standard error of the mean ([tex]\(\text{SE}\)[/tex]) instead of the population standard deviation. The standard error is calculated as:
[tex]\[ \text{SE} = \frac{\sigma}{\sqrt{n}} \][/tex]
#### Steps:
1. Calculate the standard error:
[tex]\[ \text{SE} = \frac{81.6}{\sqrt{183}} \approx 6.026 \][/tex]
2. Convert the lower bound and upper bound of the sample mean to Z-scores:
[tex]\[ Z_{lower} = \frac{207.3 - 218.2}{6.026} = -1.807 \][/tex]
[tex]\[ Z_{upper} = \frac{208.5 - 218.2}{6.026} = -1.608 \][/tex]
3. Use the standard normal distribution (Z-table) to find the probabilities corresponding to [tex]\( Z_{lower} \)[/tex] and [tex]\( Z_{upper} \)[/tex].
4. The desired probability is the difference between these probabilities:
[tex]\[ P(207.3 < M < 208.5) = P(Z_{upper}) - P(Z_{lower}) \][/tex]
After calculating, we get:
[tex]\[ P(207.3 < M < 208.5) = 0.0185 \][/tex]
### Conclusion
- Part a: [tex]\( P(207.3 < X < 208.5) = 0.0058 \)[/tex]
- Part b: [tex]\( P(207.3 < M < 208.5) = 0.0185 \)[/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.