Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To find the probabilities, we'll start by calculating the corresponding Z-scores for the given values.
### Part a
#### Given:
- Population mean ([tex]\(\mu\)[/tex]) = 218.2
- Population standard deviation ([tex]\(\sigma\)[/tex]) = 81.6
- Lower bound ([tex]\(X_{lower}\)[/tex]) = 207.3
- Upper bound ([tex]\(X_{upper}\)[/tex]) = 208.5
We need to find the Z-scores for both bounds using the formula:
[tex]\[ Z = \frac{X - \mu}{\sigma} \][/tex]
#### Steps:
1. Calculate the Z-score for the lower bound ([tex]\(X_{lower} = 207.3\)[/tex]):
[tex]\[ Z_{lower} = \frac{207.3 - 218.2}{81.6} = -0.1336 \][/tex]
2. Calculate the Z-score for the upper bound ([tex]\(X_{upper} = 208.5\)[/tex]):
[tex]\[ Z_{upper} = \frac{208.5 - 218.2}{81.6} = -0.1189 \][/tex]
3. Use the standard normal distribution (Z-table) to find the probabilities corresponding to [tex]\( Z_{lower} \)[/tex] and [tex]\( Z_{upper} \)[/tex].
4. The desired probability is the difference between these probabilities:
[tex]\[ P(207.3 < X < 208.5) = P(Z_{upper}) - P(Z_{lower}) \][/tex]
After calculating, we get:
[tex]\[ P(207.3 < X < 208.5) = 0.0058 \][/tex]
### Part b
#### Given:
- Sample size ([tex]\(n\)[/tex]) = 183
- Population mean ([tex]\(\mu\)[/tex]) = 218.2
- Population standard deviation ([tex]\(\sigma\)[/tex]) = 81.6
- Lower bound for mean ([tex]\(M_{lower}\)[/tex]) = 207.3
- Upper bound for mean ([tex]\(M_{upper}\)[/tex]) = 208.5
Since we are dealing with a sample mean, we need to use the standard error of the mean ([tex]\(\text{SE}\)[/tex]) instead of the population standard deviation. The standard error is calculated as:
[tex]\[ \text{SE} = \frac{\sigma}{\sqrt{n}} \][/tex]
#### Steps:
1. Calculate the standard error:
[tex]\[ \text{SE} = \frac{81.6}{\sqrt{183}} \approx 6.026 \][/tex]
2. Convert the lower bound and upper bound of the sample mean to Z-scores:
[tex]\[ Z_{lower} = \frac{207.3 - 218.2}{6.026} = -1.807 \][/tex]
[tex]\[ Z_{upper} = \frac{208.5 - 218.2}{6.026} = -1.608 \][/tex]
3. Use the standard normal distribution (Z-table) to find the probabilities corresponding to [tex]\( Z_{lower} \)[/tex] and [tex]\( Z_{upper} \)[/tex].
4. The desired probability is the difference between these probabilities:
[tex]\[ P(207.3 < M < 208.5) = P(Z_{upper}) - P(Z_{lower}) \][/tex]
After calculating, we get:
[tex]\[ P(207.3 < M < 208.5) = 0.0185 \][/tex]
### Conclusion
- Part a: [tex]\( P(207.3 < X < 208.5) = 0.0058 \)[/tex]
- Part b: [tex]\( P(207.3 < M < 208.5) = 0.0185 \)[/tex]
### Part a
#### Given:
- Population mean ([tex]\(\mu\)[/tex]) = 218.2
- Population standard deviation ([tex]\(\sigma\)[/tex]) = 81.6
- Lower bound ([tex]\(X_{lower}\)[/tex]) = 207.3
- Upper bound ([tex]\(X_{upper}\)[/tex]) = 208.5
We need to find the Z-scores for both bounds using the formula:
[tex]\[ Z = \frac{X - \mu}{\sigma} \][/tex]
#### Steps:
1. Calculate the Z-score for the lower bound ([tex]\(X_{lower} = 207.3\)[/tex]):
[tex]\[ Z_{lower} = \frac{207.3 - 218.2}{81.6} = -0.1336 \][/tex]
2. Calculate the Z-score for the upper bound ([tex]\(X_{upper} = 208.5\)[/tex]):
[tex]\[ Z_{upper} = \frac{208.5 - 218.2}{81.6} = -0.1189 \][/tex]
3. Use the standard normal distribution (Z-table) to find the probabilities corresponding to [tex]\( Z_{lower} \)[/tex] and [tex]\( Z_{upper} \)[/tex].
4. The desired probability is the difference between these probabilities:
[tex]\[ P(207.3 < X < 208.5) = P(Z_{upper}) - P(Z_{lower}) \][/tex]
After calculating, we get:
[tex]\[ P(207.3 < X < 208.5) = 0.0058 \][/tex]
### Part b
#### Given:
- Sample size ([tex]\(n\)[/tex]) = 183
- Population mean ([tex]\(\mu\)[/tex]) = 218.2
- Population standard deviation ([tex]\(\sigma\)[/tex]) = 81.6
- Lower bound for mean ([tex]\(M_{lower}\)[/tex]) = 207.3
- Upper bound for mean ([tex]\(M_{upper}\)[/tex]) = 208.5
Since we are dealing with a sample mean, we need to use the standard error of the mean ([tex]\(\text{SE}\)[/tex]) instead of the population standard deviation. The standard error is calculated as:
[tex]\[ \text{SE} = \frac{\sigma}{\sqrt{n}} \][/tex]
#### Steps:
1. Calculate the standard error:
[tex]\[ \text{SE} = \frac{81.6}{\sqrt{183}} \approx 6.026 \][/tex]
2. Convert the lower bound and upper bound of the sample mean to Z-scores:
[tex]\[ Z_{lower} = \frac{207.3 - 218.2}{6.026} = -1.807 \][/tex]
[tex]\[ Z_{upper} = \frac{208.5 - 218.2}{6.026} = -1.608 \][/tex]
3. Use the standard normal distribution (Z-table) to find the probabilities corresponding to [tex]\( Z_{lower} \)[/tex] and [tex]\( Z_{upper} \)[/tex].
4. The desired probability is the difference between these probabilities:
[tex]\[ P(207.3 < M < 208.5) = P(Z_{upper}) - P(Z_{lower}) \][/tex]
After calculating, we get:
[tex]\[ P(207.3 < M < 208.5) = 0.0185 \][/tex]
### Conclusion
- Part a: [tex]\( P(207.3 < X < 208.5) = 0.0058 \)[/tex]
- Part b: [tex]\( P(207.3 < M < 208.5) = 0.0185 \)[/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.