Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine which equation best represents the data, we will analyze the profit values based on the number of items produced.
Let's review the equations provided:
1. [tex]\( y = -1.026x^2 + 1016.402x - 162075 \)[/tex]
2. [tex]\( y = -1.036x^2 + 1024.771x - 163710 \)[/tex]
3. [tex]\( y = 298.214x - 66317.667 \)[/tex]
4. [tex]\( y = 196.2x - 18710 \)[/tex]
We will see the general behavior of the given data:
- At [tex]\( x = 100 \)[/tex], [tex]\( y = -70,500 \)[/tex]
- At [tex]\( x = 200 \)[/tex], [tex]\( y = 50 \)[/tex]
- At [tex]\( x = 300 \)[/tex], [tex]\( y = 50,100 \)[/tex]
- At [tex]\( x = 400 \)[/tex], [tex]\( y = 80,300 \)[/tex]
- At [tex]\( x = 500 \)[/tex], [tex]\( y = 90,400 \)[/tex]
- At [tex]\( x = 600 \)[/tex], [tex]\( y = 78,000 \)[/tex]
This spread of data suggests a non-linear relationship, possibly quadratic given the profit values peak and then decrease.
Selecting the best-fit equation:
1. [tex]\( y = -1.026x^2 + 1016.402x - 162075 \)[/tex]
2. [tex]\( y = -1.036x^2 + 1024.771x - 163710 \)[/tex]
3. [tex]\( y = 298.214x - 66317.667 \)[/tex]
4. [tex]\( y = 196.2x - 18710 \)[/tex]
Considering the nature of the coefficients and the polynomial degree, as well as confirming the given consistent answer:
[tex]\[ \boxed{\text{None}} \][/tex]
Let's review the equations provided:
1. [tex]\( y = -1.026x^2 + 1016.402x - 162075 \)[/tex]
2. [tex]\( y = -1.036x^2 + 1024.771x - 163710 \)[/tex]
3. [tex]\( y = 298.214x - 66317.667 \)[/tex]
4. [tex]\( y = 196.2x - 18710 \)[/tex]
We will see the general behavior of the given data:
- At [tex]\( x = 100 \)[/tex], [tex]\( y = -70,500 \)[/tex]
- At [tex]\( x = 200 \)[/tex], [tex]\( y = 50 \)[/tex]
- At [tex]\( x = 300 \)[/tex], [tex]\( y = 50,100 \)[/tex]
- At [tex]\( x = 400 \)[/tex], [tex]\( y = 80,300 \)[/tex]
- At [tex]\( x = 500 \)[/tex], [tex]\( y = 90,400 \)[/tex]
- At [tex]\( x = 600 \)[/tex], [tex]\( y = 78,000 \)[/tex]
This spread of data suggests a non-linear relationship, possibly quadratic given the profit values peak and then decrease.
Selecting the best-fit equation:
1. [tex]\( y = -1.026x^2 + 1016.402x - 162075 \)[/tex]
2. [tex]\( y = -1.036x^2 + 1024.771x - 163710 \)[/tex]
3. [tex]\( y = 298.214x - 66317.667 \)[/tex]
4. [tex]\( y = 196.2x - 18710 \)[/tex]
Considering the nature of the coefficients and the polynomial degree, as well as confirming the given consistent answer:
[tex]\[ \boxed{\text{None}} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.