Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Ask your questions and receive precise answers from experienced professionals across different disciplines. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine which of the given equations best fits the data in the table, we need to evaluate each model by calculating the sum of the squared errors (SSE) for each one. The model with the lowest SSE will be the best fit for the data. Here are the equations and the models:
1. [tex]\( y = -1.026x^2 + 1016.402x - 162075 \)[/tex]
2. [tex]\( y = -1.036x^2 + 1024.771x - 163710 \)[/tex]
3. [tex]\( y = 298.214x - 66317.667 \)[/tex]
4. [tex]\( y = 196.2x - 18710 \)[/tex]
Given data points:
[tex]\[ \begin{array}{|c|c|} \hline \text{Items produced } (x) & \text{Dollars of profit } (y) \\ \hline 100 & -70500 \\ 200 & 50 \\ 300 & 50100 \\ 400 & 80300 \\ 500 & 90400 \\ 600 & 78000 \\ \hline \end{array} \][/tex]
Let's calculate the sum of squared errors (SSE) for each model.
### Model 1: [tex]\( y = -1.026x^2 + 1016.402x - 162075 \)[/tex]
Calculate the predicted [tex]\( y \)[/tex] values and SSE for Model 1:
[tex]\[ \text{SSE}_1 \approx 980515.6400000884 \][/tex]
### Model 2: [tex]\( y = -1.036x^2 + 1024.771x - 163710 \)[/tex]
Calculate the predicted [tex]\( y \)[/tex] values and SSE for Model 2:
[tex]\[ \text{SSE}_2 \approx 1981387.31 \][/tex]
### Model 3: [tex]\( y = 298.214x - 66317.667 \)[/tex]
Calculate the predicted [tex]\( y \)[/tex] values and SSE for Model 3:
[tex]\[ \text{SSE}_3 \approx 3930834054.897733 \][/tex]
### Model 4: [tex]\( y = 196.2x - 18710 \)[/tex]
Calculate the predicted [tex]\( y \)[/tex] values and SSE for Model 4:
[tex]\[ \text{SSE}_4 \approx 6601942100.0 \][/tex]
Now, comparing the SSE values for each model:
[tex]\[ \begin{array}{|c|c|} \hline \text{Model} & \text{SSE} \\ \hline 1 & 980515.6400000884 \\ 2 & 1981387.31 \\ 3 & 3930834054.897733 \\ 4 & 6601942100.0 \\ \hline \end{array} \][/tex]
The model with the lowest SSE is Model 1 with an SSE of [tex]\( 980515.6400000884 \)[/tex].
### Conclusion
The equation that best represents the data is:
[tex]\[ y = -1.026x^2 + 1016.402x - 162075 \][/tex]
1. [tex]\( y = -1.026x^2 + 1016.402x - 162075 \)[/tex]
2. [tex]\( y = -1.036x^2 + 1024.771x - 163710 \)[/tex]
3. [tex]\( y = 298.214x - 66317.667 \)[/tex]
4. [tex]\( y = 196.2x - 18710 \)[/tex]
Given data points:
[tex]\[ \begin{array}{|c|c|} \hline \text{Items produced } (x) & \text{Dollars of profit } (y) \\ \hline 100 & -70500 \\ 200 & 50 \\ 300 & 50100 \\ 400 & 80300 \\ 500 & 90400 \\ 600 & 78000 \\ \hline \end{array} \][/tex]
Let's calculate the sum of squared errors (SSE) for each model.
### Model 1: [tex]\( y = -1.026x^2 + 1016.402x - 162075 \)[/tex]
Calculate the predicted [tex]\( y \)[/tex] values and SSE for Model 1:
[tex]\[ \text{SSE}_1 \approx 980515.6400000884 \][/tex]
### Model 2: [tex]\( y = -1.036x^2 + 1024.771x - 163710 \)[/tex]
Calculate the predicted [tex]\( y \)[/tex] values and SSE for Model 2:
[tex]\[ \text{SSE}_2 \approx 1981387.31 \][/tex]
### Model 3: [tex]\( y = 298.214x - 66317.667 \)[/tex]
Calculate the predicted [tex]\( y \)[/tex] values and SSE for Model 3:
[tex]\[ \text{SSE}_3 \approx 3930834054.897733 \][/tex]
### Model 4: [tex]\( y = 196.2x - 18710 \)[/tex]
Calculate the predicted [tex]\( y \)[/tex] values and SSE for Model 4:
[tex]\[ \text{SSE}_4 \approx 6601942100.0 \][/tex]
Now, comparing the SSE values for each model:
[tex]\[ \begin{array}{|c|c|} \hline \text{Model} & \text{SSE} \\ \hline 1 & 980515.6400000884 \\ 2 & 1981387.31 \\ 3 & 3930834054.897733 \\ 4 & 6601942100.0 \\ \hline \end{array} \][/tex]
The model with the lowest SSE is Model 1 with an SSE of [tex]\( 980515.6400000884 \)[/tex].
### Conclusion
The equation that best represents the data is:
[tex]\[ y = -1.026x^2 + 1016.402x - 162075 \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.