Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine which of the given equations best fits the data in the table, we need to evaluate each model by calculating the sum of the squared errors (SSE) for each one. The model with the lowest SSE will be the best fit for the data. Here are the equations and the models:
1. [tex]\( y = -1.026x^2 + 1016.402x - 162075 \)[/tex]
2. [tex]\( y = -1.036x^2 + 1024.771x - 163710 \)[/tex]
3. [tex]\( y = 298.214x - 66317.667 \)[/tex]
4. [tex]\( y = 196.2x - 18710 \)[/tex]
Given data points:
[tex]\[ \begin{array}{|c|c|} \hline \text{Items produced } (x) & \text{Dollars of profit } (y) \\ \hline 100 & -70500 \\ 200 & 50 \\ 300 & 50100 \\ 400 & 80300 \\ 500 & 90400 \\ 600 & 78000 \\ \hline \end{array} \][/tex]
Let's calculate the sum of squared errors (SSE) for each model.
### Model 1: [tex]\( y = -1.026x^2 + 1016.402x - 162075 \)[/tex]
Calculate the predicted [tex]\( y \)[/tex] values and SSE for Model 1:
[tex]\[ \text{SSE}_1 \approx 980515.6400000884 \][/tex]
### Model 2: [tex]\( y = -1.036x^2 + 1024.771x - 163710 \)[/tex]
Calculate the predicted [tex]\( y \)[/tex] values and SSE for Model 2:
[tex]\[ \text{SSE}_2 \approx 1981387.31 \][/tex]
### Model 3: [tex]\( y = 298.214x - 66317.667 \)[/tex]
Calculate the predicted [tex]\( y \)[/tex] values and SSE for Model 3:
[tex]\[ \text{SSE}_3 \approx 3930834054.897733 \][/tex]
### Model 4: [tex]\( y = 196.2x - 18710 \)[/tex]
Calculate the predicted [tex]\( y \)[/tex] values and SSE for Model 4:
[tex]\[ \text{SSE}_4 \approx 6601942100.0 \][/tex]
Now, comparing the SSE values for each model:
[tex]\[ \begin{array}{|c|c|} \hline \text{Model} & \text{SSE} \\ \hline 1 & 980515.6400000884 \\ 2 & 1981387.31 \\ 3 & 3930834054.897733 \\ 4 & 6601942100.0 \\ \hline \end{array} \][/tex]
The model with the lowest SSE is Model 1 with an SSE of [tex]\( 980515.6400000884 \)[/tex].
### Conclusion
The equation that best represents the data is:
[tex]\[ y = -1.026x^2 + 1016.402x - 162075 \][/tex]
1. [tex]\( y = -1.026x^2 + 1016.402x - 162075 \)[/tex]
2. [tex]\( y = -1.036x^2 + 1024.771x - 163710 \)[/tex]
3. [tex]\( y = 298.214x - 66317.667 \)[/tex]
4. [tex]\( y = 196.2x - 18710 \)[/tex]
Given data points:
[tex]\[ \begin{array}{|c|c|} \hline \text{Items produced } (x) & \text{Dollars of profit } (y) \\ \hline 100 & -70500 \\ 200 & 50 \\ 300 & 50100 \\ 400 & 80300 \\ 500 & 90400 \\ 600 & 78000 \\ \hline \end{array} \][/tex]
Let's calculate the sum of squared errors (SSE) for each model.
### Model 1: [tex]\( y = -1.026x^2 + 1016.402x - 162075 \)[/tex]
Calculate the predicted [tex]\( y \)[/tex] values and SSE for Model 1:
[tex]\[ \text{SSE}_1 \approx 980515.6400000884 \][/tex]
### Model 2: [tex]\( y = -1.036x^2 + 1024.771x - 163710 \)[/tex]
Calculate the predicted [tex]\( y \)[/tex] values and SSE for Model 2:
[tex]\[ \text{SSE}_2 \approx 1981387.31 \][/tex]
### Model 3: [tex]\( y = 298.214x - 66317.667 \)[/tex]
Calculate the predicted [tex]\( y \)[/tex] values and SSE for Model 3:
[tex]\[ \text{SSE}_3 \approx 3930834054.897733 \][/tex]
### Model 4: [tex]\( y = 196.2x - 18710 \)[/tex]
Calculate the predicted [tex]\( y \)[/tex] values and SSE for Model 4:
[tex]\[ \text{SSE}_4 \approx 6601942100.0 \][/tex]
Now, comparing the SSE values for each model:
[tex]\[ \begin{array}{|c|c|} \hline \text{Model} & \text{SSE} \\ \hline 1 & 980515.6400000884 \\ 2 & 1981387.31 \\ 3 & 3930834054.897733 \\ 4 & 6601942100.0 \\ \hline \end{array} \][/tex]
The model with the lowest SSE is Model 1 with an SSE of [tex]\( 980515.6400000884 \)[/tex].
### Conclusion
The equation that best represents the data is:
[tex]\[ y = -1.026x^2 + 1016.402x - 162075 \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.