At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine which model best represents the data set for the temperature of a cup of coffee over time, let’s perform a step-by-step analysis.
### Step-by-Step Solution:
1. Data Extraction:
We have the following pairs of time (minutes) and temperature (degrees Fahrenheit) from the table:
[tex]\[ \text{Time (min)}: [0, 10, 20, 30, 40, 50, 60] \][/tex]
[tex]\[ \text{Temperature (°F)}: [200, 180, 163, 146, 131, 118, 107] \][/tex]
2. Calculate Differences between Consecutive Temperatures:
First, find the difference in temperature between each consecutive time point:
[tex]\[ 200 - 180 = 20 \][/tex]
[tex]\[ 180 - 163 = 17 \][/tex]
[tex]\[ 163 - 146 = 17 \][/tex]
[tex]\[ 146 - 131 = 15 \][/tex]
[tex]\[ 131 - 118 = 13 \][/tex]
[tex]\[ 118 - 107 = 11 \][/tex]
The differences in temperature are:
[tex]\[ [20, 17, 17, 15, 13, 11] \][/tex]
3. Calculate Differences between Consecutive Times:
Next, find the differences in times between each consecutive point:
[tex]\[ 10 - 0 = 10 \][/tex]
[tex]\[ 20 - 10 = 10 \][/tex]
[tex]\[ 30 - 20 = 10 \][/tex]
[tex]\[ 40 - 30 = 10 \][/tex]
[tex]\[ 50 - 40 = 10 \][/tex]
[tex]\[ 60 - 50 = 10 \][/tex]
The differences in time are:
[tex]\[ [10, 10, 10, 10, 10, 10] \][/tex]
4. Calculate Rates of Change:
Then, calculate the rate of change for each time interval:
[tex]\[ \frac{20}{10} = 2 \][/tex]
[tex]\[ \frac{17}{10} = 1.7 \][/tex]
[tex]\[ \frac{17}{10} = 1.7 \][/tex]
[tex]\[ \frac{15}{10} = 1.5 \][/tex]
[tex]\[ \frac{13}{10} = 1.3 \][/tex]
[tex]\[ \frac{11}{10} = 1.1 \][/tex]
The rates of change are:
[tex]\[ [2, 1.7, 1.7, 1.5, 1.3, 1.1] \][/tex]
5. Determine Consistency of Rate of Change:
We need to check if these rates of change are consistent. Notice that the rates of change are not entirely consistent, i.e., they are not all the same.
For a linear model, the rates of change should be roughly constant (additive rate of change). However, even though the rates of change decrease over time, they do so in a pattern that indicates the presence of a multiplicative component (as the changes become smaller progressively).
### Conclusion:
Given that the differences in temperature are decreasing multiplicatively over time, the best model to represent this data set is:
[tex]\[ \textbf{exponential, because there is a relatively consistent multiplicative rate of change} \][/tex]
### Step-by-Step Solution:
1. Data Extraction:
We have the following pairs of time (minutes) and temperature (degrees Fahrenheit) from the table:
[tex]\[ \text{Time (min)}: [0, 10, 20, 30, 40, 50, 60] \][/tex]
[tex]\[ \text{Temperature (°F)}: [200, 180, 163, 146, 131, 118, 107] \][/tex]
2. Calculate Differences between Consecutive Temperatures:
First, find the difference in temperature between each consecutive time point:
[tex]\[ 200 - 180 = 20 \][/tex]
[tex]\[ 180 - 163 = 17 \][/tex]
[tex]\[ 163 - 146 = 17 \][/tex]
[tex]\[ 146 - 131 = 15 \][/tex]
[tex]\[ 131 - 118 = 13 \][/tex]
[tex]\[ 118 - 107 = 11 \][/tex]
The differences in temperature are:
[tex]\[ [20, 17, 17, 15, 13, 11] \][/tex]
3. Calculate Differences between Consecutive Times:
Next, find the differences in times between each consecutive point:
[tex]\[ 10 - 0 = 10 \][/tex]
[tex]\[ 20 - 10 = 10 \][/tex]
[tex]\[ 30 - 20 = 10 \][/tex]
[tex]\[ 40 - 30 = 10 \][/tex]
[tex]\[ 50 - 40 = 10 \][/tex]
[tex]\[ 60 - 50 = 10 \][/tex]
The differences in time are:
[tex]\[ [10, 10, 10, 10, 10, 10] \][/tex]
4. Calculate Rates of Change:
Then, calculate the rate of change for each time interval:
[tex]\[ \frac{20}{10} = 2 \][/tex]
[tex]\[ \frac{17}{10} = 1.7 \][/tex]
[tex]\[ \frac{17}{10} = 1.7 \][/tex]
[tex]\[ \frac{15}{10} = 1.5 \][/tex]
[tex]\[ \frac{13}{10} = 1.3 \][/tex]
[tex]\[ \frac{11}{10} = 1.1 \][/tex]
The rates of change are:
[tex]\[ [2, 1.7, 1.7, 1.5, 1.3, 1.1] \][/tex]
5. Determine Consistency of Rate of Change:
We need to check if these rates of change are consistent. Notice that the rates of change are not entirely consistent, i.e., they are not all the same.
For a linear model, the rates of change should be roughly constant (additive rate of change). However, even though the rates of change decrease over time, they do so in a pattern that indicates the presence of a multiplicative component (as the changes become smaller progressively).
### Conclusion:
Given that the differences in temperature are decreasing multiplicatively over time, the best model to represent this data set is:
[tex]\[ \textbf{exponential, because there is a relatively consistent multiplicative rate of change} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.