Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

The function [tex]$f(t)=349.2(0.98)^t$[/tex] models the relationship between [tex]t[/tex], the time an oven spends cooling, and the temperature of the oven.

Oven Cooling Time

\begin{tabular}{|c|c|}
\hline
\begin{tabular}{c}
Time \\
(minutes) \\
[tex]$t$[/tex]
\end{tabular} & \begin{tabular}{c}
Oven temperature \\
(degrees Fahrenheit) \\
[tex]$f(t)$[/tex]
\end{tabular} \\
\hline 5 & 315 \\
\hline 10 & 285 \\
\hline 15 & 260 \\
\hline 20 & 235 \\
\hline 25 & 210 \\
\hline
\end{tabular}

For which temperature will the model most accurately predict the time spent cooling?

A. 0
B. 100
C. 300
D. 400


Sagot :

To identify the temperature for which the model [tex]\( f(t) = 349.2 \cdot (0.98)^t \)[/tex] most accurately predicts the time spent cooling, we need to compare the predicted temperatures with the actual temperatures at given time points.

Given data points:

[tex]\[ \begin{array}{|c|c|} \hline \text{Time (minutes) } t & \text{Oven temperature (degrees Fahrenheit)} \\ \hline 5 & 315 \\ \hline 10 & 285 \\ \hline 15 & 260 \\ \hline 20 & 235 \\ \hline 25 & 210 \\ \hline \end{array} \][/tex]

First, we calculate the predicted temperatures using the model [tex]\( f(t) = 349.2 \cdot (0.98)^t \)[/tex] and evaluate the absolute differences between the predicted and actual temperatures at each time point.

1. At [tex]\( t = 5 \)[/tex]:
- Predicted temperature [tex]\( f(5) = 349.2 \cdot (0.98)^5 \approx 314.35085775744005 \)[/tex]
- Actual temperature = 315
- Difference = [tex]\( |314.35085775744005 - 315| \approx 0.6491422425599467 \)[/tex]

2. At [tex]\( t = 10 \)[/tex]:
- Predicted temperature [tex]\( f(10) = 349.2 \cdot (0.98)^{10} \approx 284.6781758348687 \)[/tex]
- Actual temperature = 285
- Difference = [tex]\( |284.6781758348687 - 285| \approx 0.32182416513131784 \)[/tex]

3. At [tex]\( t = 15 \)[/tex]:
- Predicted temperature [tex]\( f(15) = 349.2 \cdot (0.98)^{15} \approx 257.908330643775 \)[/tex]
- Actual temperature = 260
- Difference = [tex]\( |257.908330643775 - 260| \approx 2.0916693562249975 \)[/tex]

4. At [tex]\( t = 20 \)[/tex]:
- Predicted temperature [tex]\( f(20) = 349.2 \cdot (0.98)^{20} \approx 233.1287037368789 \)[/tex]
- Actual temperature = 235
- Difference = [tex]\( |233.1287037368789 - 235| \approx 1.8712962631211099 \)[/tex]

5. At [tex]\( t = 25 \)[/tex]:
- Predicted temperature [tex]\( f(25) = 349.2 \cdot (0.98)^{25} \approx 209.2701163612093 \)[/tex]
- Actual temperature = 210
- Difference = [tex]\( |209.2701163612093 - 210| \approx 0.7298836387907102 \)[/tex]

Next, we compare these differences to determine the smallest difference, which signifies the most accurate prediction by the model.

[tex]\[ \begin{array}{|c|c|} \hline \text{Time (minutes)} & \text{Absolute Difference} \\ \hline 5 & 0.6491422425599467 \\ \hline 10 & 0.32182416513131784 \\ \hline 15 & 2.0916693562249975 \\ \hline 20 & 1.8712962631211099 \\ \hline 25 & 0.7298836387907102 \\ \hline \end{array} \][/tex]

The smallest absolute difference is at [tex]\( t = 10 \)[/tex] minutes, with a difference of approximately [tex]\( 0.32182416513131784 \)[/tex]. The actual temperature at this time is [tex]\( 285 \)[/tex] degrees Fahrenheit.

Thus, the temperature for which the model most accurately predicts the time spent cooling is [tex]\( 285 \)[/tex] degrees Fahrenheit.