Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To identify the temperature for which the model [tex]\( f(t) = 349.2 \cdot (0.98)^t \)[/tex] most accurately predicts the time spent cooling, we need to compare the predicted temperatures with the actual temperatures at given time points.
Given data points:
[tex]\[ \begin{array}{|c|c|} \hline \text{Time (minutes) } t & \text{Oven temperature (degrees Fahrenheit)} \\ \hline 5 & 315 \\ \hline 10 & 285 \\ \hline 15 & 260 \\ \hline 20 & 235 \\ \hline 25 & 210 \\ \hline \end{array} \][/tex]
First, we calculate the predicted temperatures using the model [tex]\( f(t) = 349.2 \cdot (0.98)^t \)[/tex] and evaluate the absolute differences between the predicted and actual temperatures at each time point.
1. At [tex]\( t = 5 \)[/tex]:
- Predicted temperature [tex]\( f(5) = 349.2 \cdot (0.98)^5 \approx 314.35085775744005 \)[/tex]
- Actual temperature = 315
- Difference = [tex]\( |314.35085775744005 - 315| \approx 0.6491422425599467 \)[/tex]
2. At [tex]\( t = 10 \)[/tex]:
- Predicted temperature [tex]\( f(10) = 349.2 \cdot (0.98)^{10} \approx 284.6781758348687 \)[/tex]
- Actual temperature = 285
- Difference = [tex]\( |284.6781758348687 - 285| \approx 0.32182416513131784 \)[/tex]
3. At [tex]\( t = 15 \)[/tex]:
- Predicted temperature [tex]\( f(15) = 349.2 \cdot (0.98)^{15} \approx 257.908330643775 \)[/tex]
- Actual temperature = 260
- Difference = [tex]\( |257.908330643775 - 260| \approx 2.0916693562249975 \)[/tex]
4. At [tex]\( t = 20 \)[/tex]:
- Predicted temperature [tex]\( f(20) = 349.2 \cdot (0.98)^{20} \approx 233.1287037368789 \)[/tex]
- Actual temperature = 235
- Difference = [tex]\( |233.1287037368789 - 235| \approx 1.8712962631211099 \)[/tex]
5. At [tex]\( t = 25 \)[/tex]:
- Predicted temperature [tex]\( f(25) = 349.2 \cdot (0.98)^{25} \approx 209.2701163612093 \)[/tex]
- Actual temperature = 210
- Difference = [tex]\( |209.2701163612093 - 210| \approx 0.7298836387907102 \)[/tex]
Next, we compare these differences to determine the smallest difference, which signifies the most accurate prediction by the model.
[tex]\[ \begin{array}{|c|c|} \hline \text{Time (minutes)} & \text{Absolute Difference} \\ \hline 5 & 0.6491422425599467 \\ \hline 10 & 0.32182416513131784 \\ \hline 15 & 2.0916693562249975 \\ \hline 20 & 1.8712962631211099 \\ \hline 25 & 0.7298836387907102 \\ \hline \end{array} \][/tex]
The smallest absolute difference is at [tex]\( t = 10 \)[/tex] minutes, with a difference of approximately [tex]\( 0.32182416513131784 \)[/tex]. The actual temperature at this time is [tex]\( 285 \)[/tex] degrees Fahrenheit.
Thus, the temperature for which the model most accurately predicts the time spent cooling is [tex]\( 285 \)[/tex] degrees Fahrenheit.
Given data points:
[tex]\[ \begin{array}{|c|c|} \hline \text{Time (minutes) } t & \text{Oven temperature (degrees Fahrenheit)} \\ \hline 5 & 315 \\ \hline 10 & 285 \\ \hline 15 & 260 \\ \hline 20 & 235 \\ \hline 25 & 210 \\ \hline \end{array} \][/tex]
First, we calculate the predicted temperatures using the model [tex]\( f(t) = 349.2 \cdot (0.98)^t \)[/tex] and evaluate the absolute differences between the predicted and actual temperatures at each time point.
1. At [tex]\( t = 5 \)[/tex]:
- Predicted temperature [tex]\( f(5) = 349.2 \cdot (0.98)^5 \approx 314.35085775744005 \)[/tex]
- Actual temperature = 315
- Difference = [tex]\( |314.35085775744005 - 315| \approx 0.6491422425599467 \)[/tex]
2. At [tex]\( t = 10 \)[/tex]:
- Predicted temperature [tex]\( f(10) = 349.2 \cdot (0.98)^{10} \approx 284.6781758348687 \)[/tex]
- Actual temperature = 285
- Difference = [tex]\( |284.6781758348687 - 285| \approx 0.32182416513131784 \)[/tex]
3. At [tex]\( t = 15 \)[/tex]:
- Predicted temperature [tex]\( f(15) = 349.2 \cdot (0.98)^{15} \approx 257.908330643775 \)[/tex]
- Actual temperature = 260
- Difference = [tex]\( |257.908330643775 - 260| \approx 2.0916693562249975 \)[/tex]
4. At [tex]\( t = 20 \)[/tex]:
- Predicted temperature [tex]\( f(20) = 349.2 \cdot (0.98)^{20} \approx 233.1287037368789 \)[/tex]
- Actual temperature = 235
- Difference = [tex]\( |233.1287037368789 - 235| \approx 1.8712962631211099 \)[/tex]
5. At [tex]\( t = 25 \)[/tex]:
- Predicted temperature [tex]\( f(25) = 349.2 \cdot (0.98)^{25} \approx 209.2701163612093 \)[/tex]
- Actual temperature = 210
- Difference = [tex]\( |209.2701163612093 - 210| \approx 0.7298836387907102 \)[/tex]
Next, we compare these differences to determine the smallest difference, which signifies the most accurate prediction by the model.
[tex]\[ \begin{array}{|c|c|} \hline \text{Time (minutes)} & \text{Absolute Difference} \\ \hline 5 & 0.6491422425599467 \\ \hline 10 & 0.32182416513131784 \\ \hline 15 & 2.0916693562249975 \\ \hline 20 & 1.8712962631211099 \\ \hline 25 & 0.7298836387907102 \\ \hline \end{array} \][/tex]
The smallest absolute difference is at [tex]\( t = 10 \)[/tex] minutes, with a difference of approximately [tex]\( 0.32182416513131784 \)[/tex]. The actual temperature at this time is [tex]\( 285 \)[/tex] degrees Fahrenheit.
Thus, the temperature for which the model most accurately predicts the time spent cooling is [tex]\( 285 \)[/tex] degrees Fahrenheit.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.