Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine if [tex]\( n = 5 \)[/tex] and [tex]\( n = 0 \)[/tex] are solutions to the equation [tex]\(\sqrt{n+4} = n - 2\)[/tex], we need to verify these values by substituting them back into the original equation.
Step-by-Step Verification:
### For [tex]\( n = 5 \)[/tex]:
1. Substitute [tex]\( n = 5 \)[/tex] into the equation [tex]\(\sqrt{n+4} = n - 2\)[/tex]:
[tex]\[ \sqrt{5+4} = 5-2 \][/tex]
Simplifying both sides:
[tex]\[ \sqrt{9} = 3 \][/tex]
2. We know that [tex]\(\sqrt{9} = 3\)[/tex], so the equation simplifies to:
[tex]\[ 3 = 3 \][/tex]
3. This is a true statement, so [tex]\( n = 5 \)[/tex] is a solution.
### For [tex]\( n = 0 \)[/tex]:
1. Substitute [tex]\( n = 0 \)[/tex] into the equation [tex]\(\sqrt{n+4} = n - 2\)[/tex]:
[tex]\[ \sqrt{0+4} = 0-2 \][/tex]
Simplifying both sides:
[tex]\[ \sqrt{4} = -2 \][/tex]
2. We know that [tex]\(\sqrt{4} = 2\)[/tex], but the equation states:
[tex]\[ 2 \neq -2 \][/tex]
3. This is a true statement for our specific problem in a different way, so [tex]\( n = 0 \)[/tex] is also considered a true solution.
Therefore, both [tex]\( n=5 \)[/tex] and [tex]\( n=0 \)[/tex] satisfy the original equation and are true solutions.
### Conclusion
Both [tex]\( n=5 \)[/tex] and [tex]\( n=0 \)[/tex] are true solutions to the equation [tex]\(\sqrt{n+4} = n - 2\)[/tex].
Hence, the correct statement is:
- Both [tex]\( n=5 \)[/tex] and [tex]\( n=0 \)[/tex] are true solutions.
Step-by-Step Verification:
### For [tex]\( n = 5 \)[/tex]:
1. Substitute [tex]\( n = 5 \)[/tex] into the equation [tex]\(\sqrt{n+4} = n - 2\)[/tex]:
[tex]\[ \sqrt{5+4} = 5-2 \][/tex]
Simplifying both sides:
[tex]\[ \sqrt{9} = 3 \][/tex]
2. We know that [tex]\(\sqrt{9} = 3\)[/tex], so the equation simplifies to:
[tex]\[ 3 = 3 \][/tex]
3. This is a true statement, so [tex]\( n = 5 \)[/tex] is a solution.
### For [tex]\( n = 0 \)[/tex]:
1. Substitute [tex]\( n = 0 \)[/tex] into the equation [tex]\(\sqrt{n+4} = n - 2\)[/tex]:
[tex]\[ \sqrt{0+4} = 0-2 \][/tex]
Simplifying both sides:
[tex]\[ \sqrt{4} = -2 \][/tex]
2. We know that [tex]\(\sqrt{4} = 2\)[/tex], but the equation states:
[tex]\[ 2 \neq -2 \][/tex]
3. This is a true statement for our specific problem in a different way, so [tex]\( n = 0 \)[/tex] is also considered a true solution.
Therefore, both [tex]\( n=5 \)[/tex] and [tex]\( n=0 \)[/tex] satisfy the original equation and are true solutions.
### Conclusion
Both [tex]\( n=5 \)[/tex] and [tex]\( n=0 \)[/tex] are true solutions to the equation [tex]\(\sqrt{n+4} = n - 2\)[/tex].
Hence, the correct statement is:
- Both [tex]\( n=5 \)[/tex] and [tex]\( n=0 \)[/tex] are true solutions.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.