Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Sure, I'd be happy to help you with a step-by-step solution to solve the equation [tex]\(7^{3-x} = 5^{x+1}\)[/tex].
1. Understand the Equation: The equation is [tex]\(7^{3-x} = 5^{x+1}\)[/tex]. We need to solve for [tex]\(x\)[/tex].
2. Express the Equation in Logarithmic Form:
- [tex]\(7^{3-x} = 5^{x+1}\)[/tex] can be rewritten using logarithms. Taking the natural logarithm (or log base 10) on both sides gives us:
[tex]\[ \log(7^{3-x}) = \log(5^{x+1}) \][/tex]
3. Apply Logarithm Properties:
- Use the logarithmic power rule [tex]\(\log(a^b) = b\log(a)\)[/tex]:
[tex]\[ (3-x) \log(7) = (x+1) \log(5) \][/tex]
4. Distribute the Logarithms:
- Distribute [tex]\(\log(7)\)[/tex] and [tex]\(\log(5)\)[/tex] to the terms inside the parentheses:
[tex]\[ 3 \log(7) - x \log(7) = x \log(5) + \log(5) \][/tex]
5. Rearrange the Terms to Isolate [tex]\(x\)[/tex]:
- Move the terms involving [tex]\(x\)[/tex] to one side and constant terms to the other side:
[tex]\[ 3 \log(7) - \log(5) = x \log(5) + x \log(7) \][/tex]
- Factor out [tex]\(x\)[/tex] on the right side:
[tex]\[ 3 \log(7) - \log(5) = x (\log(5) + \log(7)) \][/tex]
6. Solve for [tex]\(x\)[/tex]:
- Divide both sides by [tex]\(\log(5) + \log(7)\)[/tex]:
[tex]\[ x = \frac{3 \log(7) - \log(5)}{\log(5) + \log(7)} \][/tex]
7. Simplify Using Properties of Logarithms:
- Recognize that [tex]\(\log(5) + \log(7) = \log(35)\)[/tex]:
[tex]\[ x = \frac{3 \log(7) - \log(5)}{\log(35)} \][/tex]
- Combine the terms in the numerator:
[tex]\[ x = \log_{35}\left(\frac{7^3}{5}\right) \][/tex]
8. Final Expression:
- Simplify the fraction inside the logarithm:
[tex]\[ x = \log_{35}\left(\frac{343}{5}\right) \][/tex]
Based on the final expression, we obtain:
[tex]\[ x = \log_{35}\left(\frac{343}{5}\right) \][/tex]
Hence, the solution to the equation [tex]\(7^{3-x} = 5^{x+1}\)[/tex] is:
[tex]\[ x = \log_{35}\left(\frac{343}{5}\right) \][/tex]
1. Understand the Equation: The equation is [tex]\(7^{3-x} = 5^{x+1}\)[/tex]. We need to solve for [tex]\(x\)[/tex].
2. Express the Equation in Logarithmic Form:
- [tex]\(7^{3-x} = 5^{x+1}\)[/tex] can be rewritten using logarithms. Taking the natural logarithm (or log base 10) on both sides gives us:
[tex]\[ \log(7^{3-x}) = \log(5^{x+1}) \][/tex]
3. Apply Logarithm Properties:
- Use the logarithmic power rule [tex]\(\log(a^b) = b\log(a)\)[/tex]:
[tex]\[ (3-x) \log(7) = (x+1) \log(5) \][/tex]
4. Distribute the Logarithms:
- Distribute [tex]\(\log(7)\)[/tex] and [tex]\(\log(5)\)[/tex] to the terms inside the parentheses:
[tex]\[ 3 \log(7) - x \log(7) = x \log(5) + \log(5) \][/tex]
5. Rearrange the Terms to Isolate [tex]\(x\)[/tex]:
- Move the terms involving [tex]\(x\)[/tex] to one side and constant terms to the other side:
[tex]\[ 3 \log(7) - \log(5) = x \log(5) + x \log(7) \][/tex]
- Factor out [tex]\(x\)[/tex] on the right side:
[tex]\[ 3 \log(7) - \log(5) = x (\log(5) + \log(7)) \][/tex]
6. Solve for [tex]\(x\)[/tex]:
- Divide both sides by [tex]\(\log(5) + \log(7)\)[/tex]:
[tex]\[ x = \frac{3 \log(7) - \log(5)}{\log(5) + \log(7)} \][/tex]
7. Simplify Using Properties of Logarithms:
- Recognize that [tex]\(\log(5) + \log(7) = \log(35)\)[/tex]:
[tex]\[ x = \frac{3 \log(7) - \log(5)}{\log(35)} \][/tex]
- Combine the terms in the numerator:
[tex]\[ x = \log_{35}\left(\frac{7^3}{5}\right) \][/tex]
8. Final Expression:
- Simplify the fraction inside the logarithm:
[tex]\[ x = \log_{35}\left(\frac{343}{5}\right) \][/tex]
Based on the final expression, we obtain:
[tex]\[ x = \log_{35}\left(\frac{343}{5}\right) \][/tex]
Hence, the solution to the equation [tex]\(7^{3-x} = 5^{x+1}\)[/tex] is:
[tex]\[ x = \log_{35}\left(\frac{343}{5}\right) \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.