Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Sure, I'd be happy to help you with a step-by-step solution to solve the equation [tex]\(7^{3-x} = 5^{x+1}\)[/tex].
1. Understand the Equation: The equation is [tex]\(7^{3-x} = 5^{x+1}\)[/tex]. We need to solve for [tex]\(x\)[/tex].
2. Express the Equation in Logarithmic Form:
- [tex]\(7^{3-x} = 5^{x+1}\)[/tex] can be rewritten using logarithms. Taking the natural logarithm (or log base 10) on both sides gives us:
[tex]\[ \log(7^{3-x}) = \log(5^{x+1}) \][/tex]
3. Apply Logarithm Properties:
- Use the logarithmic power rule [tex]\(\log(a^b) = b\log(a)\)[/tex]:
[tex]\[ (3-x) \log(7) = (x+1) \log(5) \][/tex]
4. Distribute the Logarithms:
- Distribute [tex]\(\log(7)\)[/tex] and [tex]\(\log(5)\)[/tex] to the terms inside the parentheses:
[tex]\[ 3 \log(7) - x \log(7) = x \log(5) + \log(5) \][/tex]
5. Rearrange the Terms to Isolate [tex]\(x\)[/tex]:
- Move the terms involving [tex]\(x\)[/tex] to one side and constant terms to the other side:
[tex]\[ 3 \log(7) - \log(5) = x \log(5) + x \log(7) \][/tex]
- Factor out [tex]\(x\)[/tex] on the right side:
[tex]\[ 3 \log(7) - \log(5) = x (\log(5) + \log(7)) \][/tex]
6. Solve for [tex]\(x\)[/tex]:
- Divide both sides by [tex]\(\log(5) + \log(7)\)[/tex]:
[tex]\[ x = \frac{3 \log(7) - \log(5)}{\log(5) + \log(7)} \][/tex]
7. Simplify Using Properties of Logarithms:
- Recognize that [tex]\(\log(5) + \log(7) = \log(35)\)[/tex]:
[tex]\[ x = \frac{3 \log(7) - \log(5)}{\log(35)} \][/tex]
- Combine the terms in the numerator:
[tex]\[ x = \log_{35}\left(\frac{7^3}{5}\right) \][/tex]
8. Final Expression:
- Simplify the fraction inside the logarithm:
[tex]\[ x = \log_{35}\left(\frac{343}{5}\right) \][/tex]
Based on the final expression, we obtain:
[tex]\[ x = \log_{35}\left(\frac{343}{5}\right) \][/tex]
Hence, the solution to the equation [tex]\(7^{3-x} = 5^{x+1}\)[/tex] is:
[tex]\[ x = \log_{35}\left(\frac{343}{5}\right) \][/tex]
1. Understand the Equation: The equation is [tex]\(7^{3-x} = 5^{x+1}\)[/tex]. We need to solve for [tex]\(x\)[/tex].
2. Express the Equation in Logarithmic Form:
- [tex]\(7^{3-x} = 5^{x+1}\)[/tex] can be rewritten using logarithms. Taking the natural logarithm (or log base 10) on both sides gives us:
[tex]\[ \log(7^{3-x}) = \log(5^{x+1}) \][/tex]
3. Apply Logarithm Properties:
- Use the logarithmic power rule [tex]\(\log(a^b) = b\log(a)\)[/tex]:
[tex]\[ (3-x) \log(7) = (x+1) \log(5) \][/tex]
4. Distribute the Logarithms:
- Distribute [tex]\(\log(7)\)[/tex] and [tex]\(\log(5)\)[/tex] to the terms inside the parentheses:
[tex]\[ 3 \log(7) - x \log(7) = x \log(5) + \log(5) \][/tex]
5. Rearrange the Terms to Isolate [tex]\(x\)[/tex]:
- Move the terms involving [tex]\(x\)[/tex] to one side and constant terms to the other side:
[tex]\[ 3 \log(7) - \log(5) = x \log(5) + x \log(7) \][/tex]
- Factor out [tex]\(x\)[/tex] on the right side:
[tex]\[ 3 \log(7) - \log(5) = x (\log(5) + \log(7)) \][/tex]
6. Solve for [tex]\(x\)[/tex]:
- Divide both sides by [tex]\(\log(5) + \log(7)\)[/tex]:
[tex]\[ x = \frac{3 \log(7) - \log(5)}{\log(5) + \log(7)} \][/tex]
7. Simplify Using Properties of Logarithms:
- Recognize that [tex]\(\log(5) + \log(7) = \log(35)\)[/tex]:
[tex]\[ x = \frac{3 \log(7) - \log(5)}{\log(35)} \][/tex]
- Combine the terms in the numerator:
[tex]\[ x = \log_{35}\left(\frac{7^3}{5}\right) \][/tex]
8. Final Expression:
- Simplify the fraction inside the logarithm:
[tex]\[ x = \log_{35}\left(\frac{343}{5}\right) \][/tex]
Based on the final expression, we obtain:
[tex]\[ x = \log_{35}\left(\frac{343}{5}\right) \][/tex]
Hence, the solution to the equation [tex]\(7^{3-x} = 5^{x+1}\)[/tex] is:
[tex]\[ x = \log_{35}\left(\frac{343}{5}\right) \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.