Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Let's break down the solution step by step:
### Part (a)
Formula for finding the yearly compound interest:
The formula to calculate the compound interest when it is compounded annually is:
[tex]\[ CI = P \left[\left(1+\frac{R}{100}\right)^T - 1\right] \][/tex]
where [tex]\(P\)[/tex] is the principal amount, [tex]\(R\)[/tex] is the rate of interest per annum, and [tex]\(T\)[/tex] is the time period in years.
Thus, for this problem:
[tex]\[ CI = 50000 \left[\left(1+\frac{10}{100}\right)^2 - 1\right] \][/tex]
### Part (b)
How much profit did Ramesh get in this transaction?
1. Calculate the Simple Interest (SI):
[tex]\[ SI = \frac{P \times R \times T}{100} \][/tex]
Given:
- [tex]\(P = 50000\)[/tex]
- [tex]\(R = 10\%\)[/tex]
- [tex]\(T = 2\)[/tex] years
[tex]\[ SI = \frac{50000 \times 10 \times 2}{100} = 10000 \][/tex]
2. Calculate the Compound Interest (CI) annually:
[tex]\[ CI = 50000 \left[\left(1+\frac{10}{100}\right)^2 - 1\right] \][/tex]
Simplify the inner term first:
[tex]\[ \left(1+\frac{10}{100}\right) = 1.1 \][/tex]
[tex]\[ \left(1.1\right)^2 = 1.21 \][/tex]
[tex]\[ CI = 50000 \left[1.21 - 1\right] = 50000 \times 0.21 = 10500 \][/tex]
3. Calculate the profit:
[tex]\[ \text{Profit} = CI - SI \][/tex]
[tex]\[ \text{Profit} = 10500 - 10000 = 500 \][/tex]
Thus, the profit Ramesh gets in this transaction is Rs. 500.
### Part (c)
How much more profit would Ramesh get if it is invested at semi-annual compound interest?
1. Calculate the Compound Interest (CI) semi-annually:
When interest is compounded semi-annually, the rate and time adjust as follows:
- The rate per period becomes [tex]\( R/2 \)[/tex] (since it is twice a year), so [tex]\( \frac{10}{2} = 5\% \)[/tex]
- The number of periods doubles, so [tex]\( 2 \times T = 4 \)[/tex] periods for 2 years.
The formula for compound interest in this case is:
[tex]\[ CI_{\text{semi-annual}} = P \left[\left(1 + \frac{R/2}{100}\right)^{2T} - 1\right] \][/tex]
Plugging in the values:
[tex]\[ CI_{\text{semi-annual}} = 50000 \left[\left(1 + \frac{5}{100}\right)^4 - 1\right] \][/tex]
Simplify the inner term first:
[tex]\[ \left(1+\frac{5}{100}\right) = 1.05 \][/tex]
[tex]\[ \left(1.05\right)^4 \approx 1.21550625 \][/tex]
[tex]\[ CI_{\text{semi-annual}} = 50000 \left[1.21550625 - 1\right] = 50000 \times 0.21550625 = 10775.3125\][/tex]
2. Calculate the extra profit from semi-annual compounding:
[tex]\[ \text{Extra Profit} = CI_{\text{semi-annual}} - CI \][/tex]
[tex]\[ \text{Extra Profit} = 10775.3125 - 10500 = 275.3125 \][/tex]
Thus, the additional profit Ramesh would get if invested at semi-annual compound interest is approximately Rs. 275.
### Part (a)
Formula for finding the yearly compound interest:
The formula to calculate the compound interest when it is compounded annually is:
[tex]\[ CI = P \left[\left(1+\frac{R}{100}\right)^T - 1\right] \][/tex]
where [tex]\(P\)[/tex] is the principal amount, [tex]\(R\)[/tex] is the rate of interest per annum, and [tex]\(T\)[/tex] is the time period in years.
Thus, for this problem:
[tex]\[ CI = 50000 \left[\left(1+\frac{10}{100}\right)^2 - 1\right] \][/tex]
### Part (b)
How much profit did Ramesh get in this transaction?
1. Calculate the Simple Interest (SI):
[tex]\[ SI = \frac{P \times R \times T}{100} \][/tex]
Given:
- [tex]\(P = 50000\)[/tex]
- [tex]\(R = 10\%\)[/tex]
- [tex]\(T = 2\)[/tex] years
[tex]\[ SI = \frac{50000 \times 10 \times 2}{100} = 10000 \][/tex]
2. Calculate the Compound Interest (CI) annually:
[tex]\[ CI = 50000 \left[\left(1+\frac{10}{100}\right)^2 - 1\right] \][/tex]
Simplify the inner term first:
[tex]\[ \left(1+\frac{10}{100}\right) = 1.1 \][/tex]
[tex]\[ \left(1.1\right)^2 = 1.21 \][/tex]
[tex]\[ CI = 50000 \left[1.21 - 1\right] = 50000 \times 0.21 = 10500 \][/tex]
3. Calculate the profit:
[tex]\[ \text{Profit} = CI - SI \][/tex]
[tex]\[ \text{Profit} = 10500 - 10000 = 500 \][/tex]
Thus, the profit Ramesh gets in this transaction is Rs. 500.
### Part (c)
How much more profit would Ramesh get if it is invested at semi-annual compound interest?
1. Calculate the Compound Interest (CI) semi-annually:
When interest is compounded semi-annually, the rate and time adjust as follows:
- The rate per period becomes [tex]\( R/2 \)[/tex] (since it is twice a year), so [tex]\( \frac{10}{2} = 5\% \)[/tex]
- The number of periods doubles, so [tex]\( 2 \times T = 4 \)[/tex] periods for 2 years.
The formula for compound interest in this case is:
[tex]\[ CI_{\text{semi-annual}} = P \left[\left(1 + \frac{R/2}{100}\right)^{2T} - 1\right] \][/tex]
Plugging in the values:
[tex]\[ CI_{\text{semi-annual}} = 50000 \left[\left(1 + \frac{5}{100}\right)^4 - 1\right] \][/tex]
Simplify the inner term first:
[tex]\[ \left(1+\frac{5}{100}\right) = 1.05 \][/tex]
[tex]\[ \left(1.05\right)^4 \approx 1.21550625 \][/tex]
[tex]\[ CI_{\text{semi-annual}} = 50000 \left[1.21550625 - 1\right] = 50000 \times 0.21550625 = 10775.3125\][/tex]
2. Calculate the extra profit from semi-annual compounding:
[tex]\[ \text{Extra Profit} = CI_{\text{semi-annual}} - CI \][/tex]
[tex]\[ \text{Extra Profit} = 10775.3125 - 10500 = 275.3125 \][/tex]
Thus, the additional profit Ramesh would get if invested at semi-annual compound interest is approximately Rs. 275.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.