Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

Asmita's Question Bank - SEE

1. [tex]\(Ramesh\)[/tex] borrowed [tex]\(Rs. 50000\)[/tex] from [tex]\(Himesh\)[/tex] for 2 years at the rate of [tex]\(10\% \)[/tex] simple interest. At the same time, he invested the same sum for the same time and rate compounded annually.

a. Write down the formula for finding the yearly compound interest.

[tex]\[CI_1 = P \left[\left(1 + \frac{R}{100}\right)^T - 1\right]\][/tex]

[1]

b. How much profit did Ramesh get in this transaction? Find it.

Ans: [tex]\(Rs. 500\)[/tex]

[2]

c. How much more profit would Ramesh get if it is invested at semi-annual compound interest?

Ans: [tex]\(Rs. 275\)[/tex] (approx)

[2]


Sagot :

Let's break down the solution step by step:

### Part (a)
Formula for finding the yearly compound interest:
The formula to calculate the compound interest when it is compounded annually is:
[tex]\[ CI = P \left[\left(1+\frac{R}{100}\right)^T - 1\right] \][/tex]
where [tex]\(P\)[/tex] is the principal amount, [tex]\(R\)[/tex] is the rate of interest per annum, and [tex]\(T\)[/tex] is the time period in years.

Thus, for this problem:
[tex]\[ CI = 50000 \left[\left(1+\frac{10}{100}\right)^2 - 1\right] \][/tex]

### Part (b)
How much profit did Ramesh get in this transaction?

1. Calculate the Simple Interest (SI):
[tex]\[ SI = \frac{P \times R \times T}{100} \][/tex]
Given:
- [tex]\(P = 50000\)[/tex]
- [tex]\(R = 10\%\)[/tex]
- [tex]\(T = 2\)[/tex] years

[tex]\[ SI = \frac{50000 \times 10 \times 2}{100} = 10000 \][/tex]

2. Calculate the Compound Interest (CI) annually:
[tex]\[ CI = 50000 \left[\left(1+\frac{10}{100}\right)^2 - 1\right] \][/tex]
Simplify the inner term first:
[tex]\[ \left(1+\frac{10}{100}\right) = 1.1 \][/tex]
[tex]\[ \left(1.1\right)^2 = 1.21 \][/tex]
[tex]\[ CI = 50000 \left[1.21 - 1\right] = 50000 \times 0.21 = 10500 \][/tex]

3. Calculate the profit:
[tex]\[ \text{Profit} = CI - SI \][/tex]
[tex]\[ \text{Profit} = 10500 - 10000 = 500 \][/tex]

Thus, the profit Ramesh gets in this transaction is Rs. 500.

### Part (c)
How much more profit would Ramesh get if it is invested at semi-annual compound interest?

1. Calculate the Compound Interest (CI) semi-annually:

When interest is compounded semi-annually, the rate and time adjust as follows:
- The rate per period becomes [tex]\( R/2 \)[/tex] (since it is twice a year), so [tex]\( \frac{10}{2} = 5\% \)[/tex]
- The number of periods doubles, so [tex]\( 2 \times T = 4 \)[/tex] periods for 2 years.

The formula for compound interest in this case is:
[tex]\[ CI_{\text{semi-annual}} = P \left[\left(1 + \frac{R/2}{100}\right)^{2T} - 1\right] \][/tex]

Plugging in the values:

[tex]\[ CI_{\text{semi-annual}} = 50000 \left[\left(1 + \frac{5}{100}\right)^4 - 1\right] \][/tex]
Simplify the inner term first:
[tex]\[ \left(1+\frac{5}{100}\right) = 1.05 \][/tex]
[tex]\[ \left(1.05\right)^4 \approx 1.21550625 \][/tex]
[tex]\[ CI_{\text{semi-annual}} = 50000 \left[1.21550625 - 1\right] = 50000 \times 0.21550625 = 10775.3125\][/tex]

2. Calculate the extra profit from semi-annual compounding:
[tex]\[ \text{Extra Profit} = CI_{\text{semi-annual}} - CI \][/tex]
[tex]\[ \text{Extra Profit} = 10775.3125 - 10500 = 275.3125 \][/tex]

Thus, the additional profit Ramesh would get if invested at semi-annual compound interest is approximately Rs. 275.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.