Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the minimum stopping distance for a car moving at a different speed, we need to understand the relationship between speed and stopping distance.
Given:
- Initial speed ([tex]\( v_1 \)[/tex]) = 36 km/hr
- Initial stopping distance ([tex]\( d_1 \)[/tex]) = 2 meters
- New speed ([tex]\( v_2 \)[/tex]) = 72 km/hr
First, let's convert the speeds from kilometers per hour (km/hr) to meters per second (m/s) because we want to be consistent with the units for distance (meters) and time (seconds).
1. Convert the initial speed:
[tex]\[ v_1 = 36 \, \text{km/hr} \][/tex]
We know that:
[tex]\[ 1 \, \text{km/hr} = \frac{1000 \, \text{m}}{3600 \, \text{s}} = \frac{5}{18} \, \text{m/s} \][/tex]
So:
[tex]\[ v_1 = 36 \times \frac{5}{18} \, \text{m/s} = 10 \, \text{m/s} \][/tex]
2. Convert the new speed:
[tex]\[ v_2 = 72 \, \text{km/hr} \][/tex]
[tex]\[ v_2 = 72 \times \frac{5}{18} \, \text{m/s} = 20 \, \text{m/s} \][/tex]
Next, we use the fact that the stopping distance is proportional to the square of the speed. This can be expressed as:
[tex]\[ d \propto v^2 \][/tex]
So, we set up a proportion:
[tex]\[ \frac{d_2}{d_1} = \left( \frac{v_2}{v_1} \right)^2 \][/tex]
We know:
[tex]\[ d_1 = 2 \, \text{m} \][/tex]
[tex]\[ v_1 = 10 \, \text{m/s} \][/tex]
[tex]\[ v_2 = 20 \, \text{m/s} \][/tex]
Plug these values into the proportion:
[tex]\[ \frac{d_2}{2} = \left( \frac{20}{10} \right)^2 \][/tex]
Simplify the right side:
[tex]\[ \frac{d_2}{2} = 2^2 \][/tex]
[tex]\[ \frac{d_2}{2} = 4 \][/tex]
Now, solve for [tex]\(d_2\)[/tex]:
[tex]\[ d_2 = 4 \times 2 \][/tex]
[tex]\[ d_2 = 8 \, \text{m} \][/tex]
Therefore, the minimum stopping distance when the car is moving at 72 km/hr is:
[tex]\[ \boxed{8 \, \text{meters}} \][/tex]
Given:
- Initial speed ([tex]\( v_1 \)[/tex]) = 36 km/hr
- Initial stopping distance ([tex]\( d_1 \)[/tex]) = 2 meters
- New speed ([tex]\( v_2 \)[/tex]) = 72 km/hr
First, let's convert the speeds from kilometers per hour (km/hr) to meters per second (m/s) because we want to be consistent with the units for distance (meters) and time (seconds).
1. Convert the initial speed:
[tex]\[ v_1 = 36 \, \text{km/hr} \][/tex]
We know that:
[tex]\[ 1 \, \text{km/hr} = \frac{1000 \, \text{m}}{3600 \, \text{s}} = \frac{5}{18} \, \text{m/s} \][/tex]
So:
[tex]\[ v_1 = 36 \times \frac{5}{18} \, \text{m/s} = 10 \, \text{m/s} \][/tex]
2. Convert the new speed:
[tex]\[ v_2 = 72 \, \text{km/hr} \][/tex]
[tex]\[ v_2 = 72 \times \frac{5}{18} \, \text{m/s} = 20 \, \text{m/s} \][/tex]
Next, we use the fact that the stopping distance is proportional to the square of the speed. This can be expressed as:
[tex]\[ d \propto v^2 \][/tex]
So, we set up a proportion:
[tex]\[ \frac{d_2}{d_1} = \left( \frac{v_2}{v_1} \right)^2 \][/tex]
We know:
[tex]\[ d_1 = 2 \, \text{m} \][/tex]
[tex]\[ v_1 = 10 \, \text{m/s} \][/tex]
[tex]\[ v_2 = 20 \, \text{m/s} \][/tex]
Plug these values into the proportion:
[tex]\[ \frac{d_2}{2} = \left( \frac{20}{10} \right)^2 \][/tex]
Simplify the right side:
[tex]\[ \frac{d_2}{2} = 2^2 \][/tex]
[tex]\[ \frac{d_2}{2} = 4 \][/tex]
Now, solve for [tex]\(d_2\)[/tex]:
[tex]\[ d_2 = 4 \times 2 \][/tex]
[tex]\[ d_2 = 8 \, \text{m} \][/tex]
Therefore, the minimum stopping distance when the car is moving at 72 km/hr is:
[tex]\[ \boxed{8 \, \text{meters}} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.