At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Certainly, let's break down and solve the problem step by step.
Given:
- The first term of the sequence is [tex]\( a_1 = 2 \)[/tex]
- The sequence follows the rule [tex]\( a_{n+1} = 3a_n \)[/tex]
(i) Find the value of [tex]\( a_2 \)[/tex] :
To find [tex]\( a_2 \)[/tex], we use the rule [tex]\( a_{n+1} = 3a_n \)[/tex]:
[tex]\[ a_2 = 3a_1 \][/tex]
Since [tex]\( a_1 = 2 \)[/tex]:
[tex]\[ a_2 = 3 \times 2 = 6 \][/tex]
So, the value of [tex]\( a_2 \)[/tex] is [tex]\( 6 \)[/tex].
(ii) Compare [tex]\( a_2 \)[/tex] and [tex]\( a_3 \)[/tex] :
Next, we need to find [tex]\( a_3 \)[/tex]. Again, using the rule [tex]\( a_{n+1} = 3a_n \)[/tex]:
[tex]\[ a_3 = 3a_2 \][/tex]
We already found [tex]\( a_2 = 6 \)[/tex]:
[tex]\[ a_3 = 3 \times 6 = 18 \][/tex]
So, the value of [tex]\( a_3 \)[/tex] is [tex]\( 18 \)[/tex].
Now, to compare [tex]\( a_2 \)[/tex] and [tex]\( a_3 \)[/tex], we can simply look at their values:
- [tex]\( a_2 = 6 \)[/tex]
- [tex]\( a_3 = 18 \)[/tex]
Clearly, [tex]\( a_3 \)[/tex] is greater than [tex]\( a_2 \)[/tex]. To quantify the comparison:
[tex]\[ a_3 - a_2 = 18 - 6 = 12 \][/tex]
Therefore, [tex]\( a_3 \)[/tex] is greater than [tex]\( a_2 \)[/tex] by [tex]\( 12 \)[/tex].
Summary:
- [tex]\( a_2 = 6 \)[/tex]
- [tex]\( a_3 = 18 \)[/tex]
- [tex]\( a_3 \)[/tex] is greater than [tex]\( a_2 \)[/tex] by [tex]\( 12 \)[/tex].
These detailed steps confirm the values and comparison as requested.
Given:
- The first term of the sequence is [tex]\( a_1 = 2 \)[/tex]
- The sequence follows the rule [tex]\( a_{n+1} = 3a_n \)[/tex]
(i) Find the value of [tex]\( a_2 \)[/tex] :
To find [tex]\( a_2 \)[/tex], we use the rule [tex]\( a_{n+1} = 3a_n \)[/tex]:
[tex]\[ a_2 = 3a_1 \][/tex]
Since [tex]\( a_1 = 2 \)[/tex]:
[tex]\[ a_2 = 3 \times 2 = 6 \][/tex]
So, the value of [tex]\( a_2 \)[/tex] is [tex]\( 6 \)[/tex].
(ii) Compare [tex]\( a_2 \)[/tex] and [tex]\( a_3 \)[/tex] :
Next, we need to find [tex]\( a_3 \)[/tex]. Again, using the rule [tex]\( a_{n+1} = 3a_n \)[/tex]:
[tex]\[ a_3 = 3a_2 \][/tex]
We already found [tex]\( a_2 = 6 \)[/tex]:
[tex]\[ a_3 = 3 \times 6 = 18 \][/tex]
So, the value of [tex]\( a_3 \)[/tex] is [tex]\( 18 \)[/tex].
Now, to compare [tex]\( a_2 \)[/tex] and [tex]\( a_3 \)[/tex], we can simply look at their values:
- [tex]\( a_2 = 6 \)[/tex]
- [tex]\( a_3 = 18 \)[/tex]
Clearly, [tex]\( a_3 \)[/tex] is greater than [tex]\( a_2 \)[/tex]. To quantify the comparison:
[tex]\[ a_3 - a_2 = 18 - 6 = 12 \][/tex]
Therefore, [tex]\( a_3 \)[/tex] is greater than [tex]\( a_2 \)[/tex] by [tex]\( 12 \)[/tex].
Summary:
- [tex]\( a_2 = 6 \)[/tex]
- [tex]\( a_3 = 18 \)[/tex]
- [tex]\( a_3 \)[/tex] is greater than [tex]\( a_2 \)[/tex] by [tex]\( 12 \)[/tex].
These detailed steps confirm the values and comparison as requested.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.