At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To find the least common denominator (LCD) of the fractions [tex]\(-\frac{2}{3n}\)[/tex] and [tex]\(\frac{7}{3}\)[/tex], we need to find the least common multiple (LCM) of their denominators.
The denominators of the fractions are:
[tex]\[ 3n \quad \text{and} \quad 3 \][/tex]
1. The first step is to identify the denominators.
- For [tex]\(-\frac{2}{3n}\)[/tex], the denominator is [tex]\(3n\)[/tex].
- For [tex]\(\frac{7}{3}\)[/tex], the denominator is [tex]\(3\)[/tex].
2. Next, find the LCM of these two denominators:
- The denominator [tex]\(3n\)[/tex] is already a product of [tex]\(3\)[/tex] and [tex]\(n\)[/tex].
- The denominator [tex]\(3\)[/tex] is just [tex]\(3\)[/tex].
3. To find the LCM, we need the smallest number that is a multiple of both [tex]\(3n\)[/tex] and [tex]\(3\)[/tex]. When considering multiples, remember that [tex]\(3n\)[/tex] already includes the [tex]\(3\)[/tex] factor multiplied by [tex]\(n\)[/tex].
Therefore, the least common multiple of [tex]\(3n\)[/tex] and [tex]\(3\)[/tex] is:
[tex]\[ 3n \][/tex]
So, the least common denominator (LCD) of [tex]\(-\frac{2}{3n}\)[/tex] and [tex]\(\frac{7}{3}\)[/tex] is:
[tex]\[ \boxed{3n} \][/tex]
The denominators of the fractions are:
[tex]\[ 3n \quad \text{and} \quad 3 \][/tex]
1. The first step is to identify the denominators.
- For [tex]\(-\frac{2}{3n}\)[/tex], the denominator is [tex]\(3n\)[/tex].
- For [tex]\(\frac{7}{3}\)[/tex], the denominator is [tex]\(3\)[/tex].
2. Next, find the LCM of these two denominators:
- The denominator [tex]\(3n\)[/tex] is already a product of [tex]\(3\)[/tex] and [tex]\(n\)[/tex].
- The denominator [tex]\(3\)[/tex] is just [tex]\(3\)[/tex].
3. To find the LCM, we need the smallest number that is a multiple of both [tex]\(3n\)[/tex] and [tex]\(3\)[/tex]. When considering multiples, remember that [tex]\(3n\)[/tex] already includes the [tex]\(3\)[/tex] factor multiplied by [tex]\(n\)[/tex].
Therefore, the least common multiple of [tex]\(3n\)[/tex] and [tex]\(3\)[/tex] is:
[tex]\[ 3n \][/tex]
So, the least common denominator (LCD) of [tex]\(-\frac{2}{3n}\)[/tex] and [tex]\(\frac{7}{3}\)[/tex] is:
[tex]\[ \boxed{3n} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.