Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To find the least common denominator (LCD) of the fractions [tex]\(-\frac{2}{3n}\)[/tex] and [tex]\(\frac{7}{3}\)[/tex], we need to find the least common multiple (LCM) of their denominators.
The denominators of the fractions are:
[tex]\[ 3n \quad \text{and} \quad 3 \][/tex]
1. The first step is to identify the denominators.
- For [tex]\(-\frac{2}{3n}\)[/tex], the denominator is [tex]\(3n\)[/tex].
- For [tex]\(\frac{7}{3}\)[/tex], the denominator is [tex]\(3\)[/tex].
2. Next, find the LCM of these two denominators:
- The denominator [tex]\(3n\)[/tex] is already a product of [tex]\(3\)[/tex] and [tex]\(n\)[/tex].
- The denominator [tex]\(3\)[/tex] is just [tex]\(3\)[/tex].
3. To find the LCM, we need the smallest number that is a multiple of both [tex]\(3n\)[/tex] and [tex]\(3\)[/tex]. When considering multiples, remember that [tex]\(3n\)[/tex] already includes the [tex]\(3\)[/tex] factor multiplied by [tex]\(n\)[/tex].
Therefore, the least common multiple of [tex]\(3n\)[/tex] and [tex]\(3\)[/tex] is:
[tex]\[ 3n \][/tex]
So, the least common denominator (LCD) of [tex]\(-\frac{2}{3n}\)[/tex] and [tex]\(\frac{7}{3}\)[/tex] is:
[tex]\[ \boxed{3n} \][/tex]
The denominators of the fractions are:
[tex]\[ 3n \quad \text{and} \quad 3 \][/tex]
1. The first step is to identify the denominators.
- For [tex]\(-\frac{2}{3n}\)[/tex], the denominator is [tex]\(3n\)[/tex].
- For [tex]\(\frac{7}{3}\)[/tex], the denominator is [tex]\(3\)[/tex].
2. Next, find the LCM of these two denominators:
- The denominator [tex]\(3n\)[/tex] is already a product of [tex]\(3\)[/tex] and [tex]\(n\)[/tex].
- The denominator [tex]\(3\)[/tex] is just [tex]\(3\)[/tex].
3. To find the LCM, we need the smallest number that is a multiple of both [tex]\(3n\)[/tex] and [tex]\(3\)[/tex]. When considering multiples, remember that [tex]\(3n\)[/tex] already includes the [tex]\(3\)[/tex] factor multiplied by [tex]\(n\)[/tex].
Therefore, the least common multiple of [tex]\(3n\)[/tex] and [tex]\(3\)[/tex] is:
[tex]\[ 3n \][/tex]
So, the least common denominator (LCD) of [tex]\(-\frac{2}{3n}\)[/tex] and [tex]\(\frac{7}{3}\)[/tex] is:
[tex]\[ \boxed{3n} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.