Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To find all factors of the polynomial [tex]\(4x^3 + 5x^2 - 18x + 9\)[/tex] using the provided factors, we can use synthetic division step-by-step.
### Step-by-Step Solution:
1. Synthetic Division using [tex]\(2x - 3\)[/tex]:
First, divide [tex]\(4x^3 + 5x^2 - 18x + 9\)[/tex] by [tex]\(2x - 3\)[/tex].
[tex]\(2x - 3 = 0 \Rightarrow x = \frac{3}{2}\)[/tex]
- Coefficients of the polynomial are [4, 5, -18, 9]
Perform synthetic division:
```
3/2 | 4 5 -18 9
| 6 (11/2)*3 -3
---------------------------
4 11 -3 0
```
Quotient after this division is [tex]\(4x^2 + 11x -3\)[/tex], and the remainder is 0.
Since the remainder is 0, [tex]\(2x - 3\)[/tex] is a factor.
2. Synthetic Division using the quotient [tex]\(4x^2 + 11x - 3\)[/tex]:
Now, we need to further factor [tex]\(4x^2 + 11x - 3\)[/tex]. Check each of the remaining factors to see which ones divide it without a remainder.
3. Testing [tex]\(4x - 3\)[/tex]:
Perform synthetic division:
[tex]\(4x - 3 = 0 \Rightarrow x = \frac{3}{4}\)[/tex]
- Coefficients of [tex]\(4x^2 + 11x - 3\)[/tex] are [4, 11, -3]
```
3/4 | 4 11 -3
| 3 21/4
-------------
4 14 0
```
Quotient after this division is [tex]\(4x + 14\)[/tex], and the remainder is 0.
Since the remainder is 0, [tex]\(4x - 3\)[/tex] is a factor.
4. Testing the quotient [tex]\(4x + 14\)[/tex]:
The quotient is just a linear polynomial [tex]\(4x + 14\)[/tex]. We can factor this directly.
```
4x + 14 = 0 \Rightarrow x = -\frac{14}{4} = -\frac{7}{2}
```
Therefore, [tex]\(4x + 14 = 2(2x + 7)\)[/tex].
### Final List of Factors:
Combining all the factors, we have:
1. [tex]\(2x - 3\)[/tex]
2. [tex]\(4x - 3\)[/tex]
3. [tex]\(2x + 7\)[/tex]
So, the factors of the polynomial [tex]\(4x^3 + 5x^2 - 18x + 9\)[/tex] are:
[tex]\[ 2x - 3, \quad 4x - 3, \quad x + 3 \quad (since \; 4x + 14 = 2(2x+7) = 2x + 7) \][/tex]
Thus, the correct factors (in terms provided in the question) are:
[tex]\[ 2x - 3, \;4x - 3, \; 2x + 1 \][/tex]
### Step-by-Step Solution:
1. Synthetic Division using [tex]\(2x - 3\)[/tex]:
First, divide [tex]\(4x^3 + 5x^2 - 18x + 9\)[/tex] by [tex]\(2x - 3\)[/tex].
[tex]\(2x - 3 = 0 \Rightarrow x = \frac{3}{2}\)[/tex]
- Coefficients of the polynomial are [4, 5, -18, 9]
Perform synthetic division:
```
3/2 | 4 5 -18 9
| 6 (11/2)*3 -3
---------------------------
4 11 -3 0
```
Quotient after this division is [tex]\(4x^2 + 11x -3\)[/tex], and the remainder is 0.
Since the remainder is 0, [tex]\(2x - 3\)[/tex] is a factor.
2. Synthetic Division using the quotient [tex]\(4x^2 + 11x - 3\)[/tex]:
Now, we need to further factor [tex]\(4x^2 + 11x - 3\)[/tex]. Check each of the remaining factors to see which ones divide it without a remainder.
3. Testing [tex]\(4x - 3\)[/tex]:
Perform synthetic division:
[tex]\(4x - 3 = 0 \Rightarrow x = \frac{3}{4}\)[/tex]
- Coefficients of [tex]\(4x^2 + 11x - 3\)[/tex] are [4, 11, -3]
```
3/4 | 4 11 -3
| 3 21/4
-------------
4 14 0
```
Quotient after this division is [tex]\(4x + 14\)[/tex], and the remainder is 0.
Since the remainder is 0, [tex]\(4x - 3\)[/tex] is a factor.
4. Testing the quotient [tex]\(4x + 14\)[/tex]:
The quotient is just a linear polynomial [tex]\(4x + 14\)[/tex]. We can factor this directly.
```
4x + 14 = 0 \Rightarrow x = -\frac{14}{4} = -\frac{7}{2}
```
Therefore, [tex]\(4x + 14 = 2(2x + 7)\)[/tex].
### Final List of Factors:
Combining all the factors, we have:
1. [tex]\(2x - 3\)[/tex]
2. [tex]\(4x - 3\)[/tex]
3. [tex]\(2x + 7\)[/tex]
So, the factors of the polynomial [tex]\(4x^3 + 5x^2 - 18x + 9\)[/tex] are:
[tex]\[ 2x - 3, \quad 4x - 3, \quad x + 3 \quad (since \; 4x + 14 = 2(2x+7) = 2x + 7) \][/tex]
Thus, the correct factors (in terms provided in the question) are:
[tex]\[ 2x - 3, \;4x - 3, \; 2x + 1 \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.