Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find all factors of the polynomial [tex]\(4x^3 + 5x^2 - 18x + 9\)[/tex] using the provided factors, we can use synthetic division step-by-step.
### Step-by-Step Solution:
1. Synthetic Division using [tex]\(2x - 3\)[/tex]:
First, divide [tex]\(4x^3 + 5x^2 - 18x + 9\)[/tex] by [tex]\(2x - 3\)[/tex].
[tex]\(2x - 3 = 0 \Rightarrow x = \frac{3}{2}\)[/tex]
- Coefficients of the polynomial are [4, 5, -18, 9]
Perform synthetic division:
```
3/2 | 4 5 -18 9
| 6 (11/2)*3 -3
---------------------------
4 11 -3 0
```
Quotient after this division is [tex]\(4x^2 + 11x -3\)[/tex], and the remainder is 0.
Since the remainder is 0, [tex]\(2x - 3\)[/tex] is a factor.
2. Synthetic Division using the quotient [tex]\(4x^2 + 11x - 3\)[/tex]:
Now, we need to further factor [tex]\(4x^2 + 11x - 3\)[/tex]. Check each of the remaining factors to see which ones divide it without a remainder.
3. Testing [tex]\(4x - 3\)[/tex]:
Perform synthetic division:
[tex]\(4x - 3 = 0 \Rightarrow x = \frac{3}{4}\)[/tex]
- Coefficients of [tex]\(4x^2 + 11x - 3\)[/tex] are [4, 11, -3]
```
3/4 | 4 11 -3
| 3 21/4
-------------
4 14 0
```
Quotient after this division is [tex]\(4x + 14\)[/tex], and the remainder is 0.
Since the remainder is 0, [tex]\(4x - 3\)[/tex] is a factor.
4. Testing the quotient [tex]\(4x + 14\)[/tex]:
The quotient is just a linear polynomial [tex]\(4x + 14\)[/tex]. We can factor this directly.
```
4x + 14 = 0 \Rightarrow x = -\frac{14}{4} = -\frac{7}{2}
```
Therefore, [tex]\(4x + 14 = 2(2x + 7)\)[/tex].
### Final List of Factors:
Combining all the factors, we have:
1. [tex]\(2x - 3\)[/tex]
2. [tex]\(4x - 3\)[/tex]
3. [tex]\(2x + 7\)[/tex]
So, the factors of the polynomial [tex]\(4x^3 + 5x^2 - 18x + 9\)[/tex] are:
[tex]\[ 2x - 3, \quad 4x - 3, \quad x + 3 \quad (since \; 4x + 14 = 2(2x+7) = 2x + 7) \][/tex]
Thus, the correct factors (in terms provided in the question) are:
[tex]\[ 2x - 3, \;4x - 3, \; 2x + 1 \][/tex]
### Step-by-Step Solution:
1. Synthetic Division using [tex]\(2x - 3\)[/tex]:
First, divide [tex]\(4x^3 + 5x^2 - 18x + 9\)[/tex] by [tex]\(2x - 3\)[/tex].
[tex]\(2x - 3 = 0 \Rightarrow x = \frac{3}{2}\)[/tex]
- Coefficients of the polynomial are [4, 5, -18, 9]
Perform synthetic division:
```
3/2 | 4 5 -18 9
| 6 (11/2)*3 -3
---------------------------
4 11 -3 0
```
Quotient after this division is [tex]\(4x^2 + 11x -3\)[/tex], and the remainder is 0.
Since the remainder is 0, [tex]\(2x - 3\)[/tex] is a factor.
2. Synthetic Division using the quotient [tex]\(4x^2 + 11x - 3\)[/tex]:
Now, we need to further factor [tex]\(4x^2 + 11x - 3\)[/tex]. Check each of the remaining factors to see which ones divide it without a remainder.
3. Testing [tex]\(4x - 3\)[/tex]:
Perform synthetic division:
[tex]\(4x - 3 = 0 \Rightarrow x = \frac{3}{4}\)[/tex]
- Coefficients of [tex]\(4x^2 + 11x - 3\)[/tex] are [4, 11, -3]
```
3/4 | 4 11 -3
| 3 21/4
-------------
4 14 0
```
Quotient after this division is [tex]\(4x + 14\)[/tex], and the remainder is 0.
Since the remainder is 0, [tex]\(4x - 3\)[/tex] is a factor.
4. Testing the quotient [tex]\(4x + 14\)[/tex]:
The quotient is just a linear polynomial [tex]\(4x + 14\)[/tex]. We can factor this directly.
```
4x + 14 = 0 \Rightarrow x = -\frac{14}{4} = -\frac{7}{2}
```
Therefore, [tex]\(4x + 14 = 2(2x + 7)\)[/tex].
### Final List of Factors:
Combining all the factors, we have:
1. [tex]\(2x - 3\)[/tex]
2. [tex]\(4x - 3\)[/tex]
3. [tex]\(2x + 7\)[/tex]
So, the factors of the polynomial [tex]\(4x^3 + 5x^2 - 18x + 9\)[/tex] are:
[tex]\[ 2x - 3, \quad 4x - 3, \quad x + 3 \quad (since \; 4x + 14 = 2(2x+7) = 2x + 7) \][/tex]
Thus, the correct factors (in terms provided in the question) are:
[tex]\[ 2x - 3, \;4x - 3, \; 2x + 1 \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.