Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Sure! Let's find the equation of the line that passes through the point [tex]\((-6, -2)\)[/tex] and is perpendicular to the line [tex]\(y = 4\)[/tex].
1. Identify the slope of the given line:
- The equation [tex]\(y = 4\)[/tex] represents a horizontal line because it does not depend on [tex]\(x\)[/tex]. The slope of a horizontal line is [tex]\(0\)[/tex].
2. Determine the slope of the perpendicular line:
- A line perpendicular to a horizontal line is a vertical line. The slope of a vertical line is undefined.
3. Find the equation of the perpendicular line:
- Vertical lines have equations of the form [tex]\(x = c\)[/tex], where [tex]\(c\)[/tex] is a constant representing the x-coordinate of every point on the line. Since the line must pass through [tex]\((-6, -2)\)[/tex], the x-coordinate of that point will be our constant [tex]\(c\)[/tex].
4. Write the equation:
- Therefore, the equation of the vertical line passing through the point [tex]\((-6, -2)\)[/tex] is [tex]\(x = -6\)[/tex].
In conclusion, the equation of the line passing through [tex]\((-6, -2)\)[/tex] and perpendicular to [tex]\(y = 4\)[/tex] is:
[tex]\[ \boxed{x = -6} \][/tex]
1. Identify the slope of the given line:
- The equation [tex]\(y = 4\)[/tex] represents a horizontal line because it does not depend on [tex]\(x\)[/tex]. The slope of a horizontal line is [tex]\(0\)[/tex].
2. Determine the slope of the perpendicular line:
- A line perpendicular to a horizontal line is a vertical line. The slope of a vertical line is undefined.
3. Find the equation of the perpendicular line:
- Vertical lines have equations of the form [tex]\(x = c\)[/tex], where [tex]\(c\)[/tex] is a constant representing the x-coordinate of every point on the line. Since the line must pass through [tex]\((-6, -2)\)[/tex], the x-coordinate of that point will be our constant [tex]\(c\)[/tex].
4. Write the equation:
- Therefore, the equation of the vertical line passing through the point [tex]\((-6, -2)\)[/tex] is [tex]\(x = -6\)[/tex].
In conclusion, the equation of the line passing through [tex]\((-6, -2)\)[/tex] and perpendicular to [tex]\(y = 4\)[/tex] is:
[tex]\[ \boxed{x = -6} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.