Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To show that [tex]\(\log_{\frac{1}{a}} y = -\log_a y\)[/tex], we start with the definition of logarithms. By definition, if [tex]\(\log_b(y) = x\)[/tex], then [tex]\(b^x = y\)[/tex].
For the logarithm with the base [tex]\(\frac{1}{a}\)[/tex], we write:
[tex]\[ \log_{\frac{1}{a}} y = x \implies \left(\frac{1}{a}\right)^x = y \][/tex]
We know that [tex]\(\frac{1}{a} = a^{-1}\)[/tex], so we can rewrite the left-hand side:
[tex]\[ a^{-x} = y \][/tex]
By definition of the logarithm with base [tex]\(a\)[/tex], if [tex]\(a^z = y\)[/tex], then [tex]\(z = \log_a y\)[/tex]. Here, we have:
[tex]\[ a^{-x} = y \implies -x = \log_a y \implies x = -\log_a y \][/tex]
Therefore:
[tex]\[ \log_{\frac{1}{a}} y = -\log_a y \][/tex]
This property is now established.
Next, we use this property to solve the equation:
[tex]\[ \log_3(3 - x) = \log_{\frac{1}{3}}(5 - 2x) \][/tex]
Using the identity we just proved, we can rewrite the right-hand side:
[tex]\[ \log_3(3 - x) = -\log_3(5 - 2x) \][/tex]
Rewriting using the negative sign:
[tex]\[ \log_3(3 - x) = \log_3((5 - 2x)^{-1}) \][/tex]
Since the logarithms are equal, we can equate the arguments:
[tex]\[ 3 - x = (5 - 2x)^{-1} \][/tex]
Taking the reciprocal on both sides gives:
[tex]\[ (3 - x)^{-1} = 5 - 2x \][/tex]
Now, solving for [tex]\(x\)[/tex]:
1. Start with:
[tex]\[ \frac{1}{3 - x} = 5 - 2x \][/tex]
2. Cross-multiply to clear the fraction:
[tex]\[ 1 = (3 - x)(5 - 2x) \][/tex]
3. Expand the right-hand side:
[tex]\[ 1 = 15 - 6x - 5x + 2x^2 \][/tex]
[tex]\[ 1 = 15 - 11x + 2x^2 \][/tex]
4. Rearrange into standard quadratic form:
[tex]\[ 2x^2 - 11x + 15 - 1 = 0 \][/tex]
[tex]\[ 2x^2 - 11x + 14 = 0 \][/tex]
5. Solve this quadratic equation using the quadratic formula [tex]\(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex], where [tex]\(a = 2\)[/tex], [tex]\(b = -11\)[/tex], and [tex]\(c = 14\)[/tex]:
[tex]\[ x = \frac{11 \pm \sqrt{(-11)^2 - 4 \cdot 2 \cdot 14}}{2 \cdot 2} \][/tex]
[tex]\[ x = \frac{11 \pm \sqrt{121 - 112}}{4} \][/tex]
[tex]\[ x = \frac{11 \pm \sqrt{9}}{4} \][/tex]
[tex]\[ x = \frac{11 \pm 3}{4} \][/tex]
6. This gives two possible solutions:
[tex]\[ x = \frac{11 + 3}{4} = \frac{14}{4} = 3.5 \][/tex]
[tex]\[ x = \frac{11 - 3}{4} = \frac{8}{4} = 2 \][/tex]
Among these solutions, we need to verify which is valid for the original equation. Checking the valid solution:
For [tex]\(x = 3.5\)[/tex]:
[tex]\[ 3 - 3.5 = -0.5 \quad (\text{which does not work as log of a negative number is undefined}) \][/tex]
For [tex]\(x = 2\)[/tex]:
[tex]\[ 3 - 2 = 1 \quad \text{and} \quad 5 - 2(2) = 1 \quad (\text{valid}) \][/tex]
Thus, the valid solution is:
[tex]\[ x = 2 \][/tex]
For the logarithm with the base [tex]\(\frac{1}{a}\)[/tex], we write:
[tex]\[ \log_{\frac{1}{a}} y = x \implies \left(\frac{1}{a}\right)^x = y \][/tex]
We know that [tex]\(\frac{1}{a} = a^{-1}\)[/tex], so we can rewrite the left-hand side:
[tex]\[ a^{-x} = y \][/tex]
By definition of the logarithm with base [tex]\(a\)[/tex], if [tex]\(a^z = y\)[/tex], then [tex]\(z = \log_a y\)[/tex]. Here, we have:
[tex]\[ a^{-x} = y \implies -x = \log_a y \implies x = -\log_a y \][/tex]
Therefore:
[tex]\[ \log_{\frac{1}{a}} y = -\log_a y \][/tex]
This property is now established.
Next, we use this property to solve the equation:
[tex]\[ \log_3(3 - x) = \log_{\frac{1}{3}}(5 - 2x) \][/tex]
Using the identity we just proved, we can rewrite the right-hand side:
[tex]\[ \log_3(3 - x) = -\log_3(5 - 2x) \][/tex]
Rewriting using the negative sign:
[tex]\[ \log_3(3 - x) = \log_3((5 - 2x)^{-1}) \][/tex]
Since the logarithms are equal, we can equate the arguments:
[tex]\[ 3 - x = (5 - 2x)^{-1} \][/tex]
Taking the reciprocal on both sides gives:
[tex]\[ (3 - x)^{-1} = 5 - 2x \][/tex]
Now, solving for [tex]\(x\)[/tex]:
1. Start with:
[tex]\[ \frac{1}{3 - x} = 5 - 2x \][/tex]
2. Cross-multiply to clear the fraction:
[tex]\[ 1 = (3 - x)(5 - 2x) \][/tex]
3. Expand the right-hand side:
[tex]\[ 1 = 15 - 6x - 5x + 2x^2 \][/tex]
[tex]\[ 1 = 15 - 11x + 2x^2 \][/tex]
4. Rearrange into standard quadratic form:
[tex]\[ 2x^2 - 11x + 15 - 1 = 0 \][/tex]
[tex]\[ 2x^2 - 11x + 14 = 0 \][/tex]
5. Solve this quadratic equation using the quadratic formula [tex]\(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex], where [tex]\(a = 2\)[/tex], [tex]\(b = -11\)[/tex], and [tex]\(c = 14\)[/tex]:
[tex]\[ x = \frac{11 \pm \sqrt{(-11)^2 - 4 \cdot 2 \cdot 14}}{2 \cdot 2} \][/tex]
[tex]\[ x = \frac{11 \pm \sqrt{121 - 112}}{4} \][/tex]
[tex]\[ x = \frac{11 \pm \sqrt{9}}{4} \][/tex]
[tex]\[ x = \frac{11 \pm 3}{4} \][/tex]
6. This gives two possible solutions:
[tex]\[ x = \frac{11 + 3}{4} = \frac{14}{4} = 3.5 \][/tex]
[tex]\[ x = \frac{11 - 3}{4} = \frac{8}{4} = 2 \][/tex]
Among these solutions, we need to verify which is valid for the original equation. Checking the valid solution:
For [tex]\(x = 3.5\)[/tex]:
[tex]\[ 3 - 3.5 = -0.5 \quad (\text{which does not work as log of a negative number is undefined}) \][/tex]
For [tex]\(x = 2\)[/tex]:
[tex]\[ 3 - 2 = 1 \quad \text{and} \quad 5 - 2(2) = 1 \quad (\text{valid}) \][/tex]
Thus, the valid solution is:
[tex]\[ x = 2 \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.