Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To show that [tex]\(\log_{\frac{1}{a}} y = -\log_a y\)[/tex], we start with the definition of logarithms. By definition, if [tex]\(\log_b(y) = x\)[/tex], then [tex]\(b^x = y\)[/tex].
For the logarithm with the base [tex]\(\frac{1}{a}\)[/tex], we write:
[tex]\[ \log_{\frac{1}{a}} y = x \implies \left(\frac{1}{a}\right)^x = y \][/tex]
We know that [tex]\(\frac{1}{a} = a^{-1}\)[/tex], so we can rewrite the left-hand side:
[tex]\[ a^{-x} = y \][/tex]
By definition of the logarithm with base [tex]\(a\)[/tex], if [tex]\(a^z = y\)[/tex], then [tex]\(z = \log_a y\)[/tex]. Here, we have:
[tex]\[ a^{-x} = y \implies -x = \log_a y \implies x = -\log_a y \][/tex]
Therefore:
[tex]\[ \log_{\frac{1}{a}} y = -\log_a y \][/tex]
This property is now established.
Next, we use this property to solve the equation:
[tex]\[ \log_3(3 - x) = \log_{\frac{1}{3}}(5 - 2x) \][/tex]
Using the identity we just proved, we can rewrite the right-hand side:
[tex]\[ \log_3(3 - x) = -\log_3(5 - 2x) \][/tex]
Rewriting using the negative sign:
[tex]\[ \log_3(3 - x) = \log_3((5 - 2x)^{-1}) \][/tex]
Since the logarithms are equal, we can equate the arguments:
[tex]\[ 3 - x = (5 - 2x)^{-1} \][/tex]
Taking the reciprocal on both sides gives:
[tex]\[ (3 - x)^{-1} = 5 - 2x \][/tex]
Now, solving for [tex]\(x\)[/tex]:
1. Start with:
[tex]\[ \frac{1}{3 - x} = 5 - 2x \][/tex]
2. Cross-multiply to clear the fraction:
[tex]\[ 1 = (3 - x)(5 - 2x) \][/tex]
3. Expand the right-hand side:
[tex]\[ 1 = 15 - 6x - 5x + 2x^2 \][/tex]
[tex]\[ 1 = 15 - 11x + 2x^2 \][/tex]
4. Rearrange into standard quadratic form:
[tex]\[ 2x^2 - 11x + 15 - 1 = 0 \][/tex]
[tex]\[ 2x^2 - 11x + 14 = 0 \][/tex]
5. Solve this quadratic equation using the quadratic formula [tex]\(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex], where [tex]\(a = 2\)[/tex], [tex]\(b = -11\)[/tex], and [tex]\(c = 14\)[/tex]:
[tex]\[ x = \frac{11 \pm \sqrt{(-11)^2 - 4 \cdot 2 \cdot 14}}{2 \cdot 2} \][/tex]
[tex]\[ x = \frac{11 \pm \sqrt{121 - 112}}{4} \][/tex]
[tex]\[ x = \frac{11 \pm \sqrt{9}}{4} \][/tex]
[tex]\[ x = \frac{11 \pm 3}{4} \][/tex]
6. This gives two possible solutions:
[tex]\[ x = \frac{11 + 3}{4} = \frac{14}{4} = 3.5 \][/tex]
[tex]\[ x = \frac{11 - 3}{4} = \frac{8}{4} = 2 \][/tex]
Among these solutions, we need to verify which is valid for the original equation. Checking the valid solution:
For [tex]\(x = 3.5\)[/tex]:
[tex]\[ 3 - 3.5 = -0.5 \quad (\text{which does not work as log of a negative number is undefined}) \][/tex]
For [tex]\(x = 2\)[/tex]:
[tex]\[ 3 - 2 = 1 \quad \text{and} \quad 5 - 2(2) = 1 \quad (\text{valid}) \][/tex]
Thus, the valid solution is:
[tex]\[ x = 2 \][/tex]
For the logarithm with the base [tex]\(\frac{1}{a}\)[/tex], we write:
[tex]\[ \log_{\frac{1}{a}} y = x \implies \left(\frac{1}{a}\right)^x = y \][/tex]
We know that [tex]\(\frac{1}{a} = a^{-1}\)[/tex], so we can rewrite the left-hand side:
[tex]\[ a^{-x} = y \][/tex]
By definition of the logarithm with base [tex]\(a\)[/tex], if [tex]\(a^z = y\)[/tex], then [tex]\(z = \log_a y\)[/tex]. Here, we have:
[tex]\[ a^{-x} = y \implies -x = \log_a y \implies x = -\log_a y \][/tex]
Therefore:
[tex]\[ \log_{\frac{1}{a}} y = -\log_a y \][/tex]
This property is now established.
Next, we use this property to solve the equation:
[tex]\[ \log_3(3 - x) = \log_{\frac{1}{3}}(5 - 2x) \][/tex]
Using the identity we just proved, we can rewrite the right-hand side:
[tex]\[ \log_3(3 - x) = -\log_3(5 - 2x) \][/tex]
Rewriting using the negative sign:
[tex]\[ \log_3(3 - x) = \log_3((5 - 2x)^{-1}) \][/tex]
Since the logarithms are equal, we can equate the arguments:
[tex]\[ 3 - x = (5 - 2x)^{-1} \][/tex]
Taking the reciprocal on both sides gives:
[tex]\[ (3 - x)^{-1} = 5 - 2x \][/tex]
Now, solving for [tex]\(x\)[/tex]:
1. Start with:
[tex]\[ \frac{1}{3 - x} = 5 - 2x \][/tex]
2. Cross-multiply to clear the fraction:
[tex]\[ 1 = (3 - x)(5 - 2x) \][/tex]
3. Expand the right-hand side:
[tex]\[ 1 = 15 - 6x - 5x + 2x^2 \][/tex]
[tex]\[ 1 = 15 - 11x + 2x^2 \][/tex]
4. Rearrange into standard quadratic form:
[tex]\[ 2x^2 - 11x + 15 - 1 = 0 \][/tex]
[tex]\[ 2x^2 - 11x + 14 = 0 \][/tex]
5. Solve this quadratic equation using the quadratic formula [tex]\(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex], where [tex]\(a = 2\)[/tex], [tex]\(b = -11\)[/tex], and [tex]\(c = 14\)[/tex]:
[tex]\[ x = \frac{11 \pm \sqrt{(-11)^2 - 4 \cdot 2 \cdot 14}}{2 \cdot 2} \][/tex]
[tex]\[ x = \frac{11 \pm \sqrt{121 - 112}}{4} \][/tex]
[tex]\[ x = \frac{11 \pm \sqrt{9}}{4} \][/tex]
[tex]\[ x = \frac{11 \pm 3}{4} \][/tex]
6. This gives two possible solutions:
[tex]\[ x = \frac{11 + 3}{4} = \frac{14}{4} = 3.5 \][/tex]
[tex]\[ x = \frac{11 - 3}{4} = \frac{8}{4} = 2 \][/tex]
Among these solutions, we need to verify which is valid for the original equation. Checking the valid solution:
For [tex]\(x = 3.5\)[/tex]:
[tex]\[ 3 - 3.5 = -0.5 \quad (\text{which does not work as log of a negative number is undefined}) \][/tex]
For [tex]\(x = 2\)[/tex]:
[tex]\[ 3 - 2 = 1 \quad \text{and} \quad 5 - 2(2) = 1 \quad (\text{valid}) \][/tex]
Thus, the valid solution is:
[tex]\[ x = 2 \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.