Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Sure! Let's work through this problem step by step.
### Part (a)
Objective: Determine the volume of a 1.0 M KI solution required to precipitate all the [tex]\( \text{Pb}^{2+} \)[/tex] ions in a 360.0 mL solution that is 0.20 M in [tex]\( \text{Pb}^{2+} \)[/tex] ions.
1. Calculate the moles of [tex]\( \text{Pb}^{2+} \)[/tex]:
[tex]\[ \text{Moles of } \text{Pb}^{2+} = \text{Molarity } \times \text{ Volume in liters} \][/tex]
Since we are given 360.0 mL, we need to convert it to liters:
[tex]\[ \text{Volume in liters} = \frac{360.0 \text{ mL}}{1000} = 0.360 \text{ L} \][/tex]
[tex]\[ \text{Moles of } \text{Pb}^{2+} = 0.20 \text{ M} \times 0.360 \text{ L} = 0.072 \text{ moles} \][/tex]
2. Determine the moles of [tex]\( \text{I}^{-} \)[/tex] needed:
From the reaction [tex]\( \text{Pb}^{2+}(aq) + 2\text{ I}^{-}(aq) \rightarrow \text{PbI}_2(s) \)[/tex], 1 mole of [tex]\( \text{Pb}^{2+} \)[/tex] reacts with 2 moles of [tex]\( \text{I}^{-} \)[/tex]. Therefore:
[tex]\[ \text{Moles of } \text{I}^{-} \text{ required} = 2 \times \text{Moles of } \text{Pb}^{2+} = 2 \times 0.072 = 0.144 \text{ moles} \][/tex]
3. Calculate the volume of [tex]\( 1.0 \text{ M KI} \)[/tex] solution needed:
[tex]\[ \text{Molarity (M)} = \frac{\text{Moles}}{\text{Volume in liters}} \][/tex]
Rearranging to solve for volume:
[tex]\[ \text{Volume in liters} = \frac{\text{Moles of } \text{I}^{-}}{\text{Molarity of KI}} = \frac{0.144}{1.0} = 0.144 \text{ L} \][/tex]
Convert this volume to mL:
[tex]\[ \text{Volume in mL} = 0.144 \text{ L} \times 1000 = 144.0 \text{ mL} \][/tex]
So, the volume of a 1.0 M KI solution needed is [tex]\( 144.0 \)[/tex] mL.
### Part (b)
Objective: Determine the mass of [tex]\( \text{PbI}_2 \)[/tex] that should precipitate.
1. Calculate the moles of [tex]\( \text{PbI}_2 \)[/tex] formed:
From the chemical reaction, the moles of [tex]\( \text{PbI}_2 \)[/tex] formed will be equal to the moles of [tex]\( \text{Pb}^{2+} \)[/tex] that reacted, which is 0.072 moles.
2. Determine the molar mass of [tex]\( \text{PbI}_2 \)[/tex]:
[tex]\[ \text{Molar mass of } \text{PbI}_2 = \text{Molar mass of } \text{Pb} + 2 \times \text{Molar mass of } \text{I} \][/tex]
Given (assuming the principles of atomic masses):
- [tex]\( \text{Pb} \approx 207.2 \text{ g/mol} \)[/tex]
- [tex]\( \text{I} \approx 126.9 \text{ g/mol} \)[/tex]
[tex]\[ \text{Molar mass of } \text{PbI}_2 = 207.2 + 2 \times 126.9 = 461.0 \text{ g/mol} \][/tex]
3. Calculate the mass of [tex]\( \text{PbI}_2 \)[/tex] precipitated:
[tex]\[ \text{Mass of } \text{PbI}_2 = \text{Moles of } \text{PbI}_2 \times \text{Molar mass of } \text{PbI}_2 \][/tex]
[tex]\[ \text{Mass of } \text{PbI}_2 = 0.072 \text{ moles} \times 461.0 \text{ g/mol} = 33.192 \text{ g} \][/tex]
So, the mass of [tex]\( \text{PbI}_2 \)[/tex] that should precipitate is [tex]\( 33.192 \)[/tex] grams.
### Part (a)
Objective: Determine the volume of a 1.0 M KI solution required to precipitate all the [tex]\( \text{Pb}^{2+} \)[/tex] ions in a 360.0 mL solution that is 0.20 M in [tex]\( \text{Pb}^{2+} \)[/tex] ions.
1. Calculate the moles of [tex]\( \text{Pb}^{2+} \)[/tex]:
[tex]\[ \text{Moles of } \text{Pb}^{2+} = \text{Molarity } \times \text{ Volume in liters} \][/tex]
Since we are given 360.0 mL, we need to convert it to liters:
[tex]\[ \text{Volume in liters} = \frac{360.0 \text{ mL}}{1000} = 0.360 \text{ L} \][/tex]
[tex]\[ \text{Moles of } \text{Pb}^{2+} = 0.20 \text{ M} \times 0.360 \text{ L} = 0.072 \text{ moles} \][/tex]
2. Determine the moles of [tex]\( \text{I}^{-} \)[/tex] needed:
From the reaction [tex]\( \text{Pb}^{2+}(aq) + 2\text{ I}^{-}(aq) \rightarrow \text{PbI}_2(s) \)[/tex], 1 mole of [tex]\( \text{Pb}^{2+} \)[/tex] reacts with 2 moles of [tex]\( \text{I}^{-} \)[/tex]. Therefore:
[tex]\[ \text{Moles of } \text{I}^{-} \text{ required} = 2 \times \text{Moles of } \text{Pb}^{2+} = 2 \times 0.072 = 0.144 \text{ moles} \][/tex]
3. Calculate the volume of [tex]\( 1.0 \text{ M KI} \)[/tex] solution needed:
[tex]\[ \text{Molarity (M)} = \frac{\text{Moles}}{\text{Volume in liters}} \][/tex]
Rearranging to solve for volume:
[tex]\[ \text{Volume in liters} = \frac{\text{Moles of } \text{I}^{-}}{\text{Molarity of KI}} = \frac{0.144}{1.0} = 0.144 \text{ L} \][/tex]
Convert this volume to mL:
[tex]\[ \text{Volume in mL} = 0.144 \text{ L} \times 1000 = 144.0 \text{ mL} \][/tex]
So, the volume of a 1.0 M KI solution needed is [tex]\( 144.0 \)[/tex] mL.
### Part (b)
Objective: Determine the mass of [tex]\( \text{PbI}_2 \)[/tex] that should precipitate.
1. Calculate the moles of [tex]\( \text{PbI}_2 \)[/tex] formed:
From the chemical reaction, the moles of [tex]\( \text{PbI}_2 \)[/tex] formed will be equal to the moles of [tex]\( \text{Pb}^{2+} \)[/tex] that reacted, which is 0.072 moles.
2. Determine the molar mass of [tex]\( \text{PbI}_2 \)[/tex]:
[tex]\[ \text{Molar mass of } \text{PbI}_2 = \text{Molar mass of } \text{Pb} + 2 \times \text{Molar mass of } \text{I} \][/tex]
Given (assuming the principles of atomic masses):
- [tex]\( \text{Pb} \approx 207.2 \text{ g/mol} \)[/tex]
- [tex]\( \text{I} \approx 126.9 \text{ g/mol} \)[/tex]
[tex]\[ \text{Molar mass of } \text{PbI}_2 = 207.2 + 2 \times 126.9 = 461.0 \text{ g/mol} \][/tex]
3. Calculate the mass of [tex]\( \text{PbI}_2 \)[/tex] precipitated:
[tex]\[ \text{Mass of } \text{PbI}_2 = \text{Moles of } \text{PbI}_2 \times \text{Molar mass of } \text{PbI}_2 \][/tex]
[tex]\[ \text{Mass of } \text{PbI}_2 = 0.072 \text{ moles} \times 461.0 \text{ g/mol} = 33.192 \text{ g} \][/tex]
So, the mass of [tex]\( \text{PbI}_2 \)[/tex] that should precipitate is [tex]\( 33.192 \)[/tex] grams.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.