Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Sure! Let's work through this problem step by step.
### Part (a)
Objective: Determine the volume of a 1.0 M KI solution required to precipitate all the [tex]\( \text{Pb}^{2+} \)[/tex] ions in a 360.0 mL solution that is 0.20 M in [tex]\( \text{Pb}^{2+} \)[/tex] ions.
1. Calculate the moles of [tex]\( \text{Pb}^{2+} \)[/tex]:
[tex]\[ \text{Moles of } \text{Pb}^{2+} = \text{Molarity } \times \text{ Volume in liters} \][/tex]
Since we are given 360.0 mL, we need to convert it to liters:
[tex]\[ \text{Volume in liters} = \frac{360.0 \text{ mL}}{1000} = 0.360 \text{ L} \][/tex]
[tex]\[ \text{Moles of } \text{Pb}^{2+} = 0.20 \text{ M} \times 0.360 \text{ L} = 0.072 \text{ moles} \][/tex]
2. Determine the moles of [tex]\( \text{I}^{-} \)[/tex] needed:
From the reaction [tex]\( \text{Pb}^{2+}(aq) + 2\text{ I}^{-}(aq) \rightarrow \text{PbI}_2(s) \)[/tex], 1 mole of [tex]\( \text{Pb}^{2+} \)[/tex] reacts with 2 moles of [tex]\( \text{I}^{-} \)[/tex]. Therefore:
[tex]\[ \text{Moles of } \text{I}^{-} \text{ required} = 2 \times \text{Moles of } \text{Pb}^{2+} = 2 \times 0.072 = 0.144 \text{ moles} \][/tex]
3. Calculate the volume of [tex]\( 1.0 \text{ M KI} \)[/tex] solution needed:
[tex]\[ \text{Molarity (M)} = \frac{\text{Moles}}{\text{Volume in liters}} \][/tex]
Rearranging to solve for volume:
[tex]\[ \text{Volume in liters} = \frac{\text{Moles of } \text{I}^{-}}{\text{Molarity of KI}} = \frac{0.144}{1.0} = 0.144 \text{ L} \][/tex]
Convert this volume to mL:
[tex]\[ \text{Volume in mL} = 0.144 \text{ L} \times 1000 = 144.0 \text{ mL} \][/tex]
So, the volume of a 1.0 M KI solution needed is [tex]\( 144.0 \)[/tex] mL.
### Part (b)
Objective: Determine the mass of [tex]\( \text{PbI}_2 \)[/tex] that should precipitate.
1. Calculate the moles of [tex]\( \text{PbI}_2 \)[/tex] formed:
From the chemical reaction, the moles of [tex]\( \text{PbI}_2 \)[/tex] formed will be equal to the moles of [tex]\( \text{Pb}^{2+} \)[/tex] that reacted, which is 0.072 moles.
2. Determine the molar mass of [tex]\( \text{PbI}_2 \)[/tex]:
[tex]\[ \text{Molar mass of } \text{PbI}_2 = \text{Molar mass of } \text{Pb} + 2 \times \text{Molar mass of } \text{I} \][/tex]
Given (assuming the principles of atomic masses):
- [tex]\( \text{Pb} \approx 207.2 \text{ g/mol} \)[/tex]
- [tex]\( \text{I} \approx 126.9 \text{ g/mol} \)[/tex]
[tex]\[ \text{Molar mass of } \text{PbI}_2 = 207.2 + 2 \times 126.9 = 461.0 \text{ g/mol} \][/tex]
3. Calculate the mass of [tex]\( \text{PbI}_2 \)[/tex] precipitated:
[tex]\[ \text{Mass of } \text{PbI}_2 = \text{Moles of } \text{PbI}_2 \times \text{Molar mass of } \text{PbI}_2 \][/tex]
[tex]\[ \text{Mass of } \text{PbI}_2 = 0.072 \text{ moles} \times 461.0 \text{ g/mol} = 33.192 \text{ g} \][/tex]
So, the mass of [tex]\( \text{PbI}_2 \)[/tex] that should precipitate is [tex]\( 33.192 \)[/tex] grams.
### Part (a)
Objective: Determine the volume of a 1.0 M KI solution required to precipitate all the [tex]\( \text{Pb}^{2+} \)[/tex] ions in a 360.0 mL solution that is 0.20 M in [tex]\( \text{Pb}^{2+} \)[/tex] ions.
1. Calculate the moles of [tex]\( \text{Pb}^{2+} \)[/tex]:
[tex]\[ \text{Moles of } \text{Pb}^{2+} = \text{Molarity } \times \text{ Volume in liters} \][/tex]
Since we are given 360.0 mL, we need to convert it to liters:
[tex]\[ \text{Volume in liters} = \frac{360.0 \text{ mL}}{1000} = 0.360 \text{ L} \][/tex]
[tex]\[ \text{Moles of } \text{Pb}^{2+} = 0.20 \text{ M} \times 0.360 \text{ L} = 0.072 \text{ moles} \][/tex]
2. Determine the moles of [tex]\( \text{I}^{-} \)[/tex] needed:
From the reaction [tex]\( \text{Pb}^{2+}(aq) + 2\text{ I}^{-}(aq) \rightarrow \text{PbI}_2(s) \)[/tex], 1 mole of [tex]\( \text{Pb}^{2+} \)[/tex] reacts with 2 moles of [tex]\( \text{I}^{-} \)[/tex]. Therefore:
[tex]\[ \text{Moles of } \text{I}^{-} \text{ required} = 2 \times \text{Moles of } \text{Pb}^{2+} = 2 \times 0.072 = 0.144 \text{ moles} \][/tex]
3. Calculate the volume of [tex]\( 1.0 \text{ M KI} \)[/tex] solution needed:
[tex]\[ \text{Molarity (M)} = \frac{\text{Moles}}{\text{Volume in liters}} \][/tex]
Rearranging to solve for volume:
[tex]\[ \text{Volume in liters} = \frac{\text{Moles of } \text{I}^{-}}{\text{Molarity of KI}} = \frac{0.144}{1.0} = 0.144 \text{ L} \][/tex]
Convert this volume to mL:
[tex]\[ \text{Volume in mL} = 0.144 \text{ L} \times 1000 = 144.0 \text{ mL} \][/tex]
So, the volume of a 1.0 M KI solution needed is [tex]\( 144.0 \)[/tex] mL.
### Part (b)
Objective: Determine the mass of [tex]\( \text{PbI}_2 \)[/tex] that should precipitate.
1. Calculate the moles of [tex]\( \text{PbI}_2 \)[/tex] formed:
From the chemical reaction, the moles of [tex]\( \text{PbI}_2 \)[/tex] formed will be equal to the moles of [tex]\( \text{Pb}^{2+} \)[/tex] that reacted, which is 0.072 moles.
2. Determine the molar mass of [tex]\( \text{PbI}_2 \)[/tex]:
[tex]\[ \text{Molar mass of } \text{PbI}_2 = \text{Molar mass of } \text{Pb} + 2 \times \text{Molar mass of } \text{I} \][/tex]
Given (assuming the principles of atomic masses):
- [tex]\( \text{Pb} \approx 207.2 \text{ g/mol} \)[/tex]
- [tex]\( \text{I} \approx 126.9 \text{ g/mol} \)[/tex]
[tex]\[ \text{Molar mass of } \text{PbI}_2 = 207.2 + 2 \times 126.9 = 461.0 \text{ g/mol} \][/tex]
3. Calculate the mass of [tex]\( \text{PbI}_2 \)[/tex] precipitated:
[tex]\[ \text{Mass of } \text{PbI}_2 = \text{Moles of } \text{PbI}_2 \times \text{Molar mass of } \text{PbI}_2 \][/tex]
[tex]\[ \text{Mass of } \text{PbI}_2 = 0.072 \text{ moles} \times 461.0 \text{ g/mol} = 33.192 \text{ g} \][/tex]
So, the mass of [tex]\( \text{PbI}_2 \)[/tex] that should precipitate is [tex]\( 33.192 \)[/tex] grams.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.