At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Sure! Let's work through this problem step by step.
### Part (a)
Objective: Determine the volume of a 1.0 M KI solution required to precipitate all the [tex]\( \text{Pb}^{2+} \)[/tex] ions in a 360.0 mL solution that is 0.20 M in [tex]\( \text{Pb}^{2+} \)[/tex] ions.
1. Calculate the moles of [tex]\( \text{Pb}^{2+} \)[/tex]:
[tex]\[ \text{Moles of } \text{Pb}^{2+} = \text{Molarity } \times \text{ Volume in liters} \][/tex]
Since we are given 360.0 mL, we need to convert it to liters:
[tex]\[ \text{Volume in liters} = \frac{360.0 \text{ mL}}{1000} = 0.360 \text{ L} \][/tex]
[tex]\[ \text{Moles of } \text{Pb}^{2+} = 0.20 \text{ M} \times 0.360 \text{ L} = 0.072 \text{ moles} \][/tex]
2. Determine the moles of [tex]\( \text{I}^{-} \)[/tex] needed:
From the reaction [tex]\( \text{Pb}^{2+}(aq) + 2\text{ I}^{-}(aq) \rightarrow \text{PbI}_2(s) \)[/tex], 1 mole of [tex]\( \text{Pb}^{2+} \)[/tex] reacts with 2 moles of [tex]\( \text{I}^{-} \)[/tex]. Therefore:
[tex]\[ \text{Moles of } \text{I}^{-} \text{ required} = 2 \times \text{Moles of } \text{Pb}^{2+} = 2 \times 0.072 = 0.144 \text{ moles} \][/tex]
3. Calculate the volume of [tex]\( 1.0 \text{ M KI} \)[/tex] solution needed:
[tex]\[ \text{Molarity (M)} = \frac{\text{Moles}}{\text{Volume in liters}} \][/tex]
Rearranging to solve for volume:
[tex]\[ \text{Volume in liters} = \frac{\text{Moles of } \text{I}^{-}}{\text{Molarity of KI}} = \frac{0.144}{1.0} = 0.144 \text{ L} \][/tex]
Convert this volume to mL:
[tex]\[ \text{Volume in mL} = 0.144 \text{ L} \times 1000 = 144.0 \text{ mL} \][/tex]
So, the volume of a 1.0 M KI solution needed is [tex]\( 144.0 \)[/tex] mL.
### Part (b)
Objective: Determine the mass of [tex]\( \text{PbI}_2 \)[/tex] that should precipitate.
1. Calculate the moles of [tex]\( \text{PbI}_2 \)[/tex] formed:
From the chemical reaction, the moles of [tex]\( \text{PbI}_2 \)[/tex] formed will be equal to the moles of [tex]\( \text{Pb}^{2+} \)[/tex] that reacted, which is 0.072 moles.
2. Determine the molar mass of [tex]\( \text{PbI}_2 \)[/tex]:
[tex]\[ \text{Molar mass of } \text{PbI}_2 = \text{Molar mass of } \text{Pb} + 2 \times \text{Molar mass of } \text{I} \][/tex]
Given (assuming the principles of atomic masses):
- [tex]\( \text{Pb} \approx 207.2 \text{ g/mol} \)[/tex]
- [tex]\( \text{I} \approx 126.9 \text{ g/mol} \)[/tex]
[tex]\[ \text{Molar mass of } \text{PbI}_2 = 207.2 + 2 \times 126.9 = 461.0 \text{ g/mol} \][/tex]
3. Calculate the mass of [tex]\( \text{PbI}_2 \)[/tex] precipitated:
[tex]\[ \text{Mass of } \text{PbI}_2 = \text{Moles of } \text{PbI}_2 \times \text{Molar mass of } \text{PbI}_2 \][/tex]
[tex]\[ \text{Mass of } \text{PbI}_2 = 0.072 \text{ moles} \times 461.0 \text{ g/mol} = 33.192 \text{ g} \][/tex]
So, the mass of [tex]\( \text{PbI}_2 \)[/tex] that should precipitate is [tex]\( 33.192 \)[/tex] grams.
### Part (a)
Objective: Determine the volume of a 1.0 M KI solution required to precipitate all the [tex]\( \text{Pb}^{2+} \)[/tex] ions in a 360.0 mL solution that is 0.20 M in [tex]\( \text{Pb}^{2+} \)[/tex] ions.
1. Calculate the moles of [tex]\( \text{Pb}^{2+} \)[/tex]:
[tex]\[ \text{Moles of } \text{Pb}^{2+} = \text{Molarity } \times \text{ Volume in liters} \][/tex]
Since we are given 360.0 mL, we need to convert it to liters:
[tex]\[ \text{Volume in liters} = \frac{360.0 \text{ mL}}{1000} = 0.360 \text{ L} \][/tex]
[tex]\[ \text{Moles of } \text{Pb}^{2+} = 0.20 \text{ M} \times 0.360 \text{ L} = 0.072 \text{ moles} \][/tex]
2. Determine the moles of [tex]\( \text{I}^{-} \)[/tex] needed:
From the reaction [tex]\( \text{Pb}^{2+}(aq) + 2\text{ I}^{-}(aq) \rightarrow \text{PbI}_2(s) \)[/tex], 1 mole of [tex]\( \text{Pb}^{2+} \)[/tex] reacts with 2 moles of [tex]\( \text{I}^{-} \)[/tex]. Therefore:
[tex]\[ \text{Moles of } \text{I}^{-} \text{ required} = 2 \times \text{Moles of } \text{Pb}^{2+} = 2 \times 0.072 = 0.144 \text{ moles} \][/tex]
3. Calculate the volume of [tex]\( 1.0 \text{ M KI} \)[/tex] solution needed:
[tex]\[ \text{Molarity (M)} = \frac{\text{Moles}}{\text{Volume in liters}} \][/tex]
Rearranging to solve for volume:
[tex]\[ \text{Volume in liters} = \frac{\text{Moles of } \text{I}^{-}}{\text{Molarity of KI}} = \frac{0.144}{1.0} = 0.144 \text{ L} \][/tex]
Convert this volume to mL:
[tex]\[ \text{Volume in mL} = 0.144 \text{ L} \times 1000 = 144.0 \text{ mL} \][/tex]
So, the volume of a 1.0 M KI solution needed is [tex]\( 144.0 \)[/tex] mL.
### Part (b)
Objective: Determine the mass of [tex]\( \text{PbI}_2 \)[/tex] that should precipitate.
1. Calculate the moles of [tex]\( \text{PbI}_2 \)[/tex] formed:
From the chemical reaction, the moles of [tex]\( \text{PbI}_2 \)[/tex] formed will be equal to the moles of [tex]\( \text{Pb}^{2+} \)[/tex] that reacted, which is 0.072 moles.
2. Determine the molar mass of [tex]\( \text{PbI}_2 \)[/tex]:
[tex]\[ \text{Molar mass of } \text{PbI}_2 = \text{Molar mass of } \text{Pb} + 2 \times \text{Molar mass of } \text{I} \][/tex]
Given (assuming the principles of atomic masses):
- [tex]\( \text{Pb} \approx 207.2 \text{ g/mol} \)[/tex]
- [tex]\( \text{I} \approx 126.9 \text{ g/mol} \)[/tex]
[tex]\[ \text{Molar mass of } \text{PbI}_2 = 207.2 + 2 \times 126.9 = 461.0 \text{ g/mol} \][/tex]
3. Calculate the mass of [tex]\( \text{PbI}_2 \)[/tex] precipitated:
[tex]\[ \text{Mass of } \text{PbI}_2 = \text{Moles of } \text{PbI}_2 \times \text{Molar mass of } \text{PbI}_2 \][/tex]
[tex]\[ \text{Mass of } \text{PbI}_2 = 0.072 \text{ moles} \times 461.0 \text{ g/mol} = 33.192 \text{ g} \][/tex]
So, the mass of [tex]\( \text{PbI}_2 \)[/tex] that should precipitate is [tex]\( 33.192 \)[/tex] grams.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.