Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Be sure to answer all parts.

One way to remove lead ions from water is to add a source of iodide ions so that lead iodide will precipitate out of solution:

[tex]\[
Pb^{2+}(aq) + 2I^{-}(aq) \rightarrow PbI_2(s)
\][/tex]

(a) What volume of a [tex]$1.0 \, M \, KI$[/tex] solution must be added to [tex]$360.0 \, mL$[/tex] of a solution that is [tex]$0.20 \, M$[/tex] in [tex]$Pb^{2+}$[/tex] ion to precipitate all the lead ions?

[tex]\[\square \, mL \][/tex]

(b) What mass of [tex]$PbI_2$[/tex] should precipitate?

[tex]\[\square \, g \, PbI_2\][/tex]


Sagot :

Sure! Let's work through this problem step by step.

### Part (a)

Objective: Determine the volume of a 1.0 M KI solution required to precipitate all the [tex]\( \text{Pb}^{2+} \)[/tex] ions in a 360.0 mL solution that is 0.20 M in [tex]\( \text{Pb}^{2+} \)[/tex] ions.

1. Calculate the moles of [tex]\( \text{Pb}^{2+} \)[/tex]:
[tex]\[ \text{Moles of } \text{Pb}^{2+} = \text{Molarity } \times \text{ Volume in liters} \][/tex]
Since we are given 360.0 mL, we need to convert it to liters:
[tex]\[ \text{Volume in liters} = \frac{360.0 \text{ mL}}{1000} = 0.360 \text{ L} \][/tex]
[tex]\[ \text{Moles of } \text{Pb}^{2+} = 0.20 \text{ M} \times 0.360 \text{ L} = 0.072 \text{ moles} \][/tex]

2. Determine the moles of [tex]\( \text{I}^{-} \)[/tex] needed:
From the reaction [tex]\( \text{Pb}^{2+}(aq) + 2\text{ I}^{-}(aq) \rightarrow \text{PbI}_2(s) \)[/tex], 1 mole of [tex]\( \text{Pb}^{2+} \)[/tex] reacts with 2 moles of [tex]\( \text{I}^{-} \)[/tex]. Therefore:
[tex]\[ \text{Moles of } \text{I}^{-} \text{ required} = 2 \times \text{Moles of } \text{Pb}^{2+} = 2 \times 0.072 = 0.144 \text{ moles} \][/tex]

3. Calculate the volume of [tex]\( 1.0 \text{ M KI} \)[/tex] solution needed:
[tex]\[ \text{Molarity (M)} = \frac{\text{Moles}}{\text{Volume in liters}} \][/tex]
Rearranging to solve for volume:
[tex]\[ \text{Volume in liters} = \frac{\text{Moles of } \text{I}^{-}}{\text{Molarity of KI}} = \frac{0.144}{1.0} = 0.144 \text{ L} \][/tex]
Convert this volume to mL:
[tex]\[ \text{Volume in mL} = 0.144 \text{ L} \times 1000 = 144.0 \text{ mL} \][/tex]

So, the volume of a 1.0 M KI solution needed is [tex]\( 144.0 \)[/tex] mL.

### Part (b)

Objective: Determine the mass of [tex]\( \text{PbI}_2 \)[/tex] that should precipitate.

1. Calculate the moles of [tex]\( \text{PbI}_2 \)[/tex] formed:
From the chemical reaction, the moles of [tex]\( \text{PbI}_2 \)[/tex] formed will be equal to the moles of [tex]\( \text{Pb}^{2+} \)[/tex] that reacted, which is 0.072 moles.

2. Determine the molar mass of [tex]\( \text{PbI}_2 \)[/tex]:
[tex]\[ \text{Molar mass of } \text{PbI}_2 = \text{Molar mass of } \text{Pb} + 2 \times \text{Molar mass of } \text{I} \][/tex]
Given (assuming the principles of atomic masses):
- [tex]\( \text{Pb} \approx 207.2 \text{ g/mol} \)[/tex]
- [tex]\( \text{I} \approx 126.9 \text{ g/mol} \)[/tex]

[tex]\[ \text{Molar mass of } \text{PbI}_2 = 207.2 + 2 \times 126.9 = 461.0 \text{ g/mol} \][/tex]

3. Calculate the mass of [tex]\( \text{PbI}_2 \)[/tex] precipitated:
[tex]\[ \text{Mass of } \text{PbI}_2 = \text{Moles of } \text{PbI}_2 \times \text{Molar mass of } \text{PbI}_2 \][/tex]
[tex]\[ \text{Mass of } \text{PbI}_2 = 0.072 \text{ moles} \times 461.0 \text{ g/mol} = 33.192 \text{ g} \][/tex]

So, the mass of [tex]\( \text{PbI}_2 \)[/tex] that should precipitate is [tex]\( 33.192 \)[/tex] grams.