Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Let's solve this two-part problem step by step.
(a) Difference in Boiling Points:
To determine the difference in boiling points between a 7.0 m (molal) glucose solution and pure water, we calculate the boiling point elevation. The boiling point elevation can be found using the formula:
[tex]\[ \Delta T_b = i \times K_b \times m \][/tex]
Where:
- [tex]\( \Delta T_b \)[/tex] is the boiling point elevation.
- [tex]\( i \)[/tex] is the van't Hoff factor. For glucose, which is a non-electrolyte, [tex]\( i = 1 \)[/tex].
- [tex]\( K_b \)[/tex] is the ebullioscopic constant of the solvent (water in this case), given as [tex]\( 0.512 \, ^{\circ}C \cdot kg/mol \)[/tex].
- [tex]\( m \)[/tex] is the molality of the solution, given as [tex]\( 7.0 \, mol/kg \)[/tex].
Using the provided information, we find:
[tex]\[ \Delta T_b = 1 \times 0.512 \, ^{\circ}C \cdot kg/mol \times 7.0 \, mol/kg = 3.584 \, ^{\circ}C \][/tex]
Thus, the difference in boiling points is [tex]\( \Delta T_b \)[/tex]:
[tex]\( 3.584 \, ^{\circ}C \)[/tex]
(b) Boiling Point of the 7.0 m Glucose Solution:
Next, we determine the boiling point of the glucose solution. To do this, we add the boiling point elevation ([tex]\( \Delta T_b \)[/tex]) to the boiling point of pure water.
The boiling point of pure water is [tex]\( 100 \, ^{\circ}C \)[/tex]. Adding the boiling point elevation to this value gives:
[tex]\[ T_{solution} = 100 \, ^{\circ}C + 3.584 \, ^{\circ}C = 103.584 \, ^{\circ}C \][/tex]
Therefore, the boiling point of the 7.0 m glucose solution is:
[tex]\( 103.584 \, ^{\circ}C \)[/tex]
In summary:
(a) The difference in boiling points: [tex]\( 3.584 \, ^{\circ}C \)[/tex]
(b) The boiling point of the 7.0 m glucose solution: [tex]\( 103.584 \, ^{\circ}C \)[/tex]
(a) Difference in Boiling Points:
To determine the difference in boiling points between a 7.0 m (molal) glucose solution and pure water, we calculate the boiling point elevation. The boiling point elevation can be found using the formula:
[tex]\[ \Delta T_b = i \times K_b \times m \][/tex]
Where:
- [tex]\( \Delta T_b \)[/tex] is the boiling point elevation.
- [tex]\( i \)[/tex] is the van't Hoff factor. For glucose, which is a non-electrolyte, [tex]\( i = 1 \)[/tex].
- [tex]\( K_b \)[/tex] is the ebullioscopic constant of the solvent (water in this case), given as [tex]\( 0.512 \, ^{\circ}C \cdot kg/mol \)[/tex].
- [tex]\( m \)[/tex] is the molality of the solution, given as [tex]\( 7.0 \, mol/kg \)[/tex].
Using the provided information, we find:
[tex]\[ \Delta T_b = 1 \times 0.512 \, ^{\circ}C \cdot kg/mol \times 7.0 \, mol/kg = 3.584 \, ^{\circ}C \][/tex]
Thus, the difference in boiling points is [tex]\( \Delta T_b \)[/tex]:
[tex]\( 3.584 \, ^{\circ}C \)[/tex]
(b) Boiling Point of the 7.0 m Glucose Solution:
Next, we determine the boiling point of the glucose solution. To do this, we add the boiling point elevation ([tex]\( \Delta T_b \)[/tex]) to the boiling point of pure water.
The boiling point of pure water is [tex]\( 100 \, ^{\circ}C \)[/tex]. Adding the boiling point elevation to this value gives:
[tex]\[ T_{solution} = 100 \, ^{\circ}C + 3.584 \, ^{\circ}C = 103.584 \, ^{\circ}C \][/tex]
Therefore, the boiling point of the 7.0 m glucose solution is:
[tex]\( 103.584 \, ^{\circ}C \)[/tex]
In summary:
(a) The difference in boiling points: [tex]\( 3.584 \, ^{\circ}C \)[/tex]
(b) The boiling point of the 7.0 m glucose solution: [tex]\( 103.584 \, ^{\circ}C \)[/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.