At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To prove that the diagonals of square PQRS are perpendicular bisectors of each other, we need to show that:
1. The diagonals bisect each other.
2. The diagonals are perpendicular.
Given the information:
- The length of [tex]\(\overline{SP}\)[/tex], [tex]\(\overline{PQ}\)[/tex], [tex]\(\overline{RQ}\)[/tex], and [tex]\(\overline{SR}\)[/tex] are each 5. This confirms that PQRS is a square.
- The slope of [tex]\(\overline{SP}\)[/tex] and [tex]\(\overline{RQ}\)[/tex] is [tex]\(-\frac{4}{3}\)[/tex] and the slope of [tex]\(\overline{SR}\)[/tex] and [tex]\(\overline{PQ}\)[/tex] is [tex]\(\frac{3}{4}\)[/tex]. These properties are consistent with the sides of a square having perpendicular slopes.
- The length of [tex]\(\overline{SQ}\)[/tex] and [tex]\(\overline{RP}\)[/tex] are both [tex]\(\sqrt{50}\)[/tex]. Since the diagonals of a square are equal, this verifies that [tex]\(\overline{SQ}\)[/tex] and [tex]\(\overline{RP}\)[/tex] are indeed the diagonals, and [tex]\(\sqrt{50}\)[/tex] is the correct length for the diagonals of a square with side length 5.
To address the crucial points for perpendicular bisectors:
- The midpoint of both diagonals [tex]\(\overline{SQ}\)[/tex] and [tex]\(\overline{RP}\)[/tex] is [tex]\(\left(4 \frac{1}{2}, 5 \frac{1}{2}\right)\)[/tex]. This confirms that the diagonals have the same midpoint, meaning they bisect each other.
- The slope of [tex]\(\overline{RP}\)[/tex] is 7, and the slope of [tex]\(\overline{SQ}\)[/tex] is [tex]\(-\frac{1}{7}\)[/tex]. The product of the slopes of two perpendicular lines is [tex]\(-1\)[/tex], which is indeed the case here, as [tex]\(7 \times -\frac{1}{7} = -1\)[/tex].
Therefore:
1. Since both diagonals have the same midpoint, they bisect each other.
2. Since the slopes of [tex]\(\overline{RP}\)[/tex] and [tex]\(\overline{SQ}\)[/tex] multiply to [tex]\(-1\)[/tex], they are perpendicular.
Hence, it is proven that the diagonals of square PQRS are perpendicular bisectors of each other.
1. The diagonals bisect each other.
2. The diagonals are perpendicular.
Given the information:
- The length of [tex]\(\overline{SP}\)[/tex], [tex]\(\overline{PQ}\)[/tex], [tex]\(\overline{RQ}\)[/tex], and [tex]\(\overline{SR}\)[/tex] are each 5. This confirms that PQRS is a square.
- The slope of [tex]\(\overline{SP}\)[/tex] and [tex]\(\overline{RQ}\)[/tex] is [tex]\(-\frac{4}{3}\)[/tex] and the slope of [tex]\(\overline{SR}\)[/tex] and [tex]\(\overline{PQ}\)[/tex] is [tex]\(\frac{3}{4}\)[/tex]. These properties are consistent with the sides of a square having perpendicular slopes.
- The length of [tex]\(\overline{SQ}\)[/tex] and [tex]\(\overline{RP}\)[/tex] are both [tex]\(\sqrt{50}\)[/tex]. Since the diagonals of a square are equal, this verifies that [tex]\(\overline{SQ}\)[/tex] and [tex]\(\overline{RP}\)[/tex] are indeed the diagonals, and [tex]\(\sqrt{50}\)[/tex] is the correct length for the diagonals of a square with side length 5.
To address the crucial points for perpendicular bisectors:
- The midpoint of both diagonals [tex]\(\overline{SQ}\)[/tex] and [tex]\(\overline{RP}\)[/tex] is [tex]\(\left(4 \frac{1}{2}, 5 \frac{1}{2}\right)\)[/tex]. This confirms that the diagonals have the same midpoint, meaning they bisect each other.
- The slope of [tex]\(\overline{RP}\)[/tex] is 7, and the slope of [tex]\(\overline{SQ}\)[/tex] is [tex]\(-\frac{1}{7}\)[/tex]. The product of the slopes of two perpendicular lines is [tex]\(-1\)[/tex], which is indeed the case here, as [tex]\(7 \times -\frac{1}{7} = -1\)[/tex].
Therefore:
1. Since both diagonals have the same midpoint, they bisect each other.
2. Since the slopes of [tex]\(\overline{RP}\)[/tex] and [tex]\(\overline{SQ}\)[/tex] multiply to [tex]\(-1\)[/tex], they are perpendicular.
Hence, it is proven that the diagonals of square PQRS are perpendicular bisectors of each other.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.