Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Sure! Let's go through the given problem step-by-step.
First, we have two defined events:
- Event [tex]\( A \)[/tex]: The student plays basketball.
- Event [tex]\( B \)[/tex]: The student plays soccer.
We are given some probabilities:
- [tex]\( P(A \text{ and } B) \)[/tex]: The probability that the student plays both basketball and soccer, which is [tex]\( \frac{2}{10} \)[/tex].
- [tex]\( P(B) \)[/tex]: The probability that the student plays soccer, which is [tex]\( \frac{2}{5} \)[/tex].
We need to find [tex]\( P(A \mid B) \)[/tex], which is the conditional probability that the student plays basketball given that they play soccer. The formula for conditional probability is:
[tex]\[ P(A \mid B) = \frac{P(A \text{ and } B)}{P(B)} \][/tex]
Given:
[tex]\[ P(A \text{ and } B) = \frac{2}{10} = 0.2 \][/tex]
[tex]\[ P(B) = \frac{2}{5} = 0.4 \][/tex]
Now we can plug these values into the formula for conditional probability:
[tex]\[ P(A \mid B) = \frac{P(A \text{ and } B)}{P(B)} = \frac{0.2}{0.4} \][/tex]
Simplifying this:
[tex]\[ P(A \mid B) = 0.5 \][/tex]
Thus, the correct answer is:
C. [tex]\(\frac{2}{4} = 0.50\)[/tex]
First, we have two defined events:
- Event [tex]\( A \)[/tex]: The student plays basketball.
- Event [tex]\( B \)[/tex]: The student plays soccer.
We are given some probabilities:
- [tex]\( P(A \text{ and } B) \)[/tex]: The probability that the student plays both basketball and soccer, which is [tex]\( \frac{2}{10} \)[/tex].
- [tex]\( P(B) \)[/tex]: The probability that the student plays soccer, which is [tex]\( \frac{2}{5} \)[/tex].
We need to find [tex]\( P(A \mid B) \)[/tex], which is the conditional probability that the student plays basketball given that they play soccer. The formula for conditional probability is:
[tex]\[ P(A \mid B) = \frac{P(A \text{ and } B)}{P(B)} \][/tex]
Given:
[tex]\[ P(A \text{ and } B) = \frac{2}{10} = 0.2 \][/tex]
[tex]\[ P(B) = \frac{2}{5} = 0.4 \][/tex]
Now we can plug these values into the formula for conditional probability:
[tex]\[ P(A \mid B) = \frac{P(A \text{ and } B)}{P(B)} = \frac{0.2}{0.4} \][/tex]
Simplifying this:
[tex]\[ P(A \mid B) = 0.5 \][/tex]
Thus, the correct answer is:
C. [tex]\(\frac{2}{4} = 0.50\)[/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.