Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Sure! Let's go through the given problem step-by-step.
First, we have two defined events:
- Event [tex]\( A \)[/tex]: The student plays basketball.
- Event [tex]\( B \)[/tex]: The student plays soccer.
We are given some probabilities:
- [tex]\( P(A \text{ and } B) \)[/tex]: The probability that the student plays both basketball and soccer, which is [tex]\( \frac{2}{10} \)[/tex].
- [tex]\( P(B) \)[/tex]: The probability that the student plays soccer, which is [tex]\( \frac{2}{5} \)[/tex].
We need to find [tex]\( P(A \mid B) \)[/tex], which is the conditional probability that the student plays basketball given that they play soccer. The formula for conditional probability is:
[tex]\[ P(A \mid B) = \frac{P(A \text{ and } B)}{P(B)} \][/tex]
Given:
[tex]\[ P(A \text{ and } B) = \frac{2}{10} = 0.2 \][/tex]
[tex]\[ P(B) = \frac{2}{5} = 0.4 \][/tex]
Now we can plug these values into the formula for conditional probability:
[tex]\[ P(A \mid B) = \frac{P(A \text{ and } B)}{P(B)} = \frac{0.2}{0.4} \][/tex]
Simplifying this:
[tex]\[ P(A \mid B) = 0.5 \][/tex]
Thus, the correct answer is:
C. [tex]\(\frac{2}{4} = 0.50\)[/tex]
First, we have two defined events:
- Event [tex]\( A \)[/tex]: The student plays basketball.
- Event [tex]\( B \)[/tex]: The student plays soccer.
We are given some probabilities:
- [tex]\( P(A \text{ and } B) \)[/tex]: The probability that the student plays both basketball and soccer, which is [tex]\( \frac{2}{10} \)[/tex].
- [tex]\( P(B) \)[/tex]: The probability that the student plays soccer, which is [tex]\( \frac{2}{5} \)[/tex].
We need to find [tex]\( P(A \mid B) \)[/tex], which is the conditional probability that the student plays basketball given that they play soccer. The formula for conditional probability is:
[tex]\[ P(A \mid B) = \frac{P(A \text{ and } B)}{P(B)} \][/tex]
Given:
[tex]\[ P(A \text{ and } B) = \frac{2}{10} = 0.2 \][/tex]
[tex]\[ P(B) = \frac{2}{5} = 0.4 \][/tex]
Now we can plug these values into the formula for conditional probability:
[tex]\[ P(A \mid B) = \frac{P(A \text{ and } B)}{P(B)} = \frac{0.2}{0.4} \][/tex]
Simplifying this:
[tex]\[ P(A \mid B) = 0.5 \][/tex]
Thus, the correct answer is:
C. [tex]\(\frac{2}{4} = 0.50\)[/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.