Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To identify the correct equilibrium constant expression for the given reaction:
[tex]\[H_2(g) + F_2(g) \rightleftharpoons 2 HF(g)\][/tex]
we need to apply the law of mass action. This law states that the equilibrium constant expression [tex]\( K_{eq} \)[/tex] for a reaction is given by the ratio of the concentration of the products to the concentration of the reactants, each raised to the power of their respective stoichiometric coefficients in the balanced chemical equation.
For the reaction:
[tex]\[H_2(g) + F_2(g) \rightleftharpoons 2 HF(g),\][/tex]
the stoichiometric coefficients are:
- 1 for [tex]\(H_2\)[/tex],
- 1 for [tex]\(F_2\)[/tex],
- 2 for [tex]\(HF\)[/tex].
Therefore, the equilibrium constant expression [tex]\( K_{eq} \)[/tex] would be:
[tex]\[ K_{eq} = \frac{\left[ HF \right]^2}{\left[ H_2 \right]\left[ F_2 \right]} \][/tex]
Let's now match this expression with the given options:
1. [tex]\(K_{eq} = \frac{\left[ H_2 \right]\left[ F_2 \right]}{[ HF ]}\)[/tex]
2. [tex]\(K_{eq} = \frac{\left[ H_2 \right]\left[ F_2 \right]}{[ HF ]^2}\)[/tex]
3. [tex]\(K_{eq} = \frac{[ HF ]^2}{\left[ H_2 \right]\left[ F_2 \right]}\)[/tex]
4. [tex]\(K_{eq} = \frac{[2 HF ]}{\left[ H_2 \right]\left[ F_2 \right]}\)[/tex]
5. [tex]\(K_{eq} = \frac{[ HF ]}{\left[ H_2 \right]\left[ F_2 \right]}\)[/tex]
The correct option is:
[tex]\[K_{eq} = \frac{[ HF ]^2}{\left[ H_2 \right]\left[ F_2 \right]}\][/tex]
Thus, the answer is the third option:
[tex]\[ 3 \][/tex]
[tex]\[H_2(g) + F_2(g) \rightleftharpoons 2 HF(g)\][/tex]
we need to apply the law of mass action. This law states that the equilibrium constant expression [tex]\( K_{eq} \)[/tex] for a reaction is given by the ratio of the concentration of the products to the concentration of the reactants, each raised to the power of their respective stoichiometric coefficients in the balanced chemical equation.
For the reaction:
[tex]\[H_2(g) + F_2(g) \rightleftharpoons 2 HF(g),\][/tex]
the stoichiometric coefficients are:
- 1 for [tex]\(H_2\)[/tex],
- 1 for [tex]\(F_2\)[/tex],
- 2 for [tex]\(HF\)[/tex].
Therefore, the equilibrium constant expression [tex]\( K_{eq} \)[/tex] would be:
[tex]\[ K_{eq} = \frac{\left[ HF \right]^2}{\left[ H_2 \right]\left[ F_2 \right]} \][/tex]
Let's now match this expression with the given options:
1. [tex]\(K_{eq} = \frac{\left[ H_2 \right]\left[ F_2 \right]}{[ HF ]}\)[/tex]
2. [tex]\(K_{eq} = \frac{\left[ H_2 \right]\left[ F_2 \right]}{[ HF ]^2}\)[/tex]
3. [tex]\(K_{eq} = \frac{[ HF ]^2}{\left[ H_2 \right]\left[ F_2 \right]}\)[/tex]
4. [tex]\(K_{eq} = \frac{[2 HF ]}{\left[ H_2 \right]\left[ F_2 \right]}\)[/tex]
5. [tex]\(K_{eq} = \frac{[ HF ]}{\left[ H_2 \right]\left[ F_2 \right]}\)[/tex]
The correct option is:
[tex]\[K_{eq} = \frac{[ HF ]^2}{\left[ H_2 \right]\left[ F_2 \right]}\][/tex]
Thus, the answer is the third option:
[tex]\[ 3 \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.