Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Given the reaction:
[tex]\[ 2 \text{NO} (g) + \text{Br}_2 (g) \rightleftharpoons 2 \text{NOBr} (g) \][/tex]
and the equilibrium concentrations:
[tex]\[ [\text{NO}] = 0.089 \, M \][/tex]
[tex]\[ [\text{Br}_2] = 0.070 \, M \][/tex]
[tex]\[ [\text{NOBr}] = 0.183 \, M \][/tex]
We need to determine:
(a) The value of the equilibrium constant, [tex]\( K_{eq} \)[/tex].
(b) The position of the equilibrium.
### Step by Step Solution:
#### (a) Calculating the Equilibrium Constant, [tex]\( K_{eq} \)[/tex]:
1. Write the expression for the equilibrium constant, [tex]\( K_{eq} \)[/tex], for the given reaction:
[tex]\[ 2 \text{NO} (g) + \text{Br}_2 (g) \rightleftharpoons 2 \text{NOBr} (g) \][/tex]
The equilibrium constant expression is:
[tex]\[ K_{eq} = \frac{[\text{NOBr}]^2}{[\text{NO}]^2 [\text{Br}_2]} \][/tex]
2. Substitute the equilibrium concentrations into the expression:
[tex]\[ [\text{NOBr}] = 0.183 \, M \][/tex]
[tex]\[ [\text{NO}] = 0.089 \, M \][/tex]
[tex]\[ [\text{Br}_2] = 0.070 \, M \][/tex]
3. Calculate the equilibrium constant:
[tex]\[ K_{eq} = \frac{(0.183)^2}{(0.089)^2 \times 0.070} \][/tex]
After performing the calculations, we find:
[tex]\[ K_{eq} \approx 60.398 \][/tex]
Thus,
[tex]\[ K_{eq} = 60.398 \][/tex]
#### (b) Determining the Position of the Equilibrium:
To determine the position of the equilibrium, we compare the value of [tex]\( K_{eq} \)[/tex] to 1:
- If [tex]\( K_{eq} > 1 \)[/tex], the reaction favors the formation of products.
- If [tex]\( K_{eq} < 1 \)[/tex], the reaction favors the formation of reactants.
- If [tex]\( K_{eq} \approx 1 \)[/tex], the reaction has no strong preference for either reactants or products.
Given that [tex]\( K_{eq} = 60.398 \)[/tex]:
Since [tex]\( K_{eq} \)[/tex] is significantly greater than 1, the reaction favors the formation of products.
Therefore, the position of the equilibrium is such that the reaction favors the products.
### To Summarize:
(a) The value of the equilibrium constant is:
[tex]\[ \boxed{60.398} \][/tex]
(b) The reaction is (select):
[tex]\[ \boxed{\text{products}} \][/tex]
[tex]\[ 2 \text{NO} (g) + \text{Br}_2 (g) \rightleftharpoons 2 \text{NOBr} (g) \][/tex]
and the equilibrium concentrations:
[tex]\[ [\text{NO}] = 0.089 \, M \][/tex]
[tex]\[ [\text{Br}_2] = 0.070 \, M \][/tex]
[tex]\[ [\text{NOBr}] = 0.183 \, M \][/tex]
We need to determine:
(a) The value of the equilibrium constant, [tex]\( K_{eq} \)[/tex].
(b) The position of the equilibrium.
### Step by Step Solution:
#### (a) Calculating the Equilibrium Constant, [tex]\( K_{eq} \)[/tex]:
1. Write the expression for the equilibrium constant, [tex]\( K_{eq} \)[/tex], for the given reaction:
[tex]\[ 2 \text{NO} (g) + \text{Br}_2 (g) \rightleftharpoons 2 \text{NOBr} (g) \][/tex]
The equilibrium constant expression is:
[tex]\[ K_{eq} = \frac{[\text{NOBr}]^2}{[\text{NO}]^2 [\text{Br}_2]} \][/tex]
2. Substitute the equilibrium concentrations into the expression:
[tex]\[ [\text{NOBr}] = 0.183 \, M \][/tex]
[tex]\[ [\text{NO}] = 0.089 \, M \][/tex]
[tex]\[ [\text{Br}_2] = 0.070 \, M \][/tex]
3. Calculate the equilibrium constant:
[tex]\[ K_{eq} = \frac{(0.183)^2}{(0.089)^2 \times 0.070} \][/tex]
After performing the calculations, we find:
[tex]\[ K_{eq} \approx 60.398 \][/tex]
Thus,
[tex]\[ K_{eq} = 60.398 \][/tex]
#### (b) Determining the Position of the Equilibrium:
To determine the position of the equilibrium, we compare the value of [tex]\( K_{eq} \)[/tex] to 1:
- If [tex]\( K_{eq} > 1 \)[/tex], the reaction favors the formation of products.
- If [tex]\( K_{eq} < 1 \)[/tex], the reaction favors the formation of reactants.
- If [tex]\( K_{eq} \approx 1 \)[/tex], the reaction has no strong preference for either reactants or products.
Given that [tex]\( K_{eq} = 60.398 \)[/tex]:
Since [tex]\( K_{eq} \)[/tex] is significantly greater than 1, the reaction favors the formation of products.
Therefore, the position of the equilibrium is such that the reaction favors the products.
### To Summarize:
(a) The value of the equilibrium constant is:
[tex]\[ \boxed{60.398} \][/tex]
(b) The reaction is (select):
[tex]\[ \boxed{\text{products}} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.