Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To find the value of the expression [tex]\((-8)^{4 / 3}\)[/tex], we need to evaluate the exponentiation operation for a negative base raised to a fractional exponent.
1. Understanding the Expression:
The given expression is [tex]\((-8)^{4 / 3}\)[/tex]. The fractional exponent [tex]\(\frac{4}{3}\)[/tex] can be interpreted as a combination of taking the cube root and raising to the power of 4.
- First, we take the cube root of -8.
- Then, we raise the result to the power of 4.
2. Step-by-Step Calculation:
Let's break it down into these steps:
- Cube Root: The cube root of [tex]\(-8\)[/tex] is [tex]\(-2\)[/tex]. This is because [tex]\((-2) \times (-2) \times (-2) = -8\)[/tex].
- Raise to Power 4: Next, we raise [tex]\(-2\)[/tex] to the power of 4.
So, [tex]\((-2)^4\)[/tex] results in:
[tex]\[ (-2)^4 = (-2) \times (-2) \times (-2) \times (-2) = 16 \][/tex]
However, since we are dealing with complex numbers and the cube root of a negative number can also include complex roots, the actual evaluation involves considering all cube roots and raising them to the 4th power.
The value of [tex]\((-8)^{4/3}\)[/tex] in its complete form, considering complex numbers, is
[tex]\[ (-8.000000000000005-13.856406460551014j) \][/tex]
This is a complex number result. Therefore, the expression does not equate to a simple real number presented in the options A through D.
Thus, given the complex result, none of the provided options (A. [tex]$-\frac{32}{3}$[/tex], B. [tex]$\frac{32}{3}$[/tex], C. -16, D. 16) are correct. The answer, considering the expressions properly with complex results, is indeed
[tex]\[ (-8.000000000000005-13.856406460551014j). \][/tex]
Therefore, the correct interpretation reveals that our current choices are not sufficient to capture the true solution, which is inherently complex.
1. Understanding the Expression:
The given expression is [tex]\((-8)^{4 / 3}\)[/tex]. The fractional exponent [tex]\(\frac{4}{3}\)[/tex] can be interpreted as a combination of taking the cube root and raising to the power of 4.
- First, we take the cube root of -8.
- Then, we raise the result to the power of 4.
2. Step-by-Step Calculation:
Let's break it down into these steps:
- Cube Root: The cube root of [tex]\(-8\)[/tex] is [tex]\(-2\)[/tex]. This is because [tex]\((-2) \times (-2) \times (-2) = -8\)[/tex].
- Raise to Power 4: Next, we raise [tex]\(-2\)[/tex] to the power of 4.
So, [tex]\((-2)^4\)[/tex] results in:
[tex]\[ (-2)^4 = (-2) \times (-2) \times (-2) \times (-2) = 16 \][/tex]
However, since we are dealing with complex numbers and the cube root of a negative number can also include complex roots, the actual evaluation involves considering all cube roots and raising them to the 4th power.
The value of [tex]\((-8)^{4/3}\)[/tex] in its complete form, considering complex numbers, is
[tex]\[ (-8.000000000000005-13.856406460551014j) \][/tex]
This is a complex number result. Therefore, the expression does not equate to a simple real number presented in the options A through D.
Thus, given the complex result, none of the provided options (A. [tex]$-\frac{32}{3}$[/tex], B. [tex]$\frac{32}{3}$[/tex], C. -16, D. 16) are correct. The answer, considering the expressions properly with complex results, is indeed
[tex]\[ (-8.000000000000005-13.856406460551014j). \][/tex]
Therefore, the correct interpretation reveals that our current choices are not sufficient to capture the true solution, which is inherently complex.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.