Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Certainly! Let's walk through the evaluation of the expression [tex]\( 3 \sqrt[3]{16} + 3 \sqrt[3]{54} - 3 \sqrt[3]{128} \)[/tex] step-by-step.
1. Calculate the cube root of 16:
[tex]\[ \sqrt[3]{16} \][/tex]
The cube root of 16 is approximately [tex]\( 2.5198421 \)[/tex].
2. Multiply the cube root of 16 by 3:
[tex]\[ 3 \times \sqrt[3]{16} = 3 \times 2.5198421 = 7.5595263 \][/tex]
3. Calculate the cube root of 54:
[tex]\[ \sqrt[3]{54} \][/tex]
The cube root of 54 is approximately [tex]\( 3.7797631 \)[/tex].
4. Multiply the cube root of 54 by 3:
[tex]\[ 3 \times \sqrt[3]{54} = 3 \times 3.7797631 = 11.3392894 \][/tex]
5. Calculate the cube root of 128:
[tex]\[ \sqrt[3]{128} \][/tex]
The cube root of 128 is approximately [tex]\( 5.0396842 \)[/tex].
6. Multiply the cube root of 128 by 3:
[tex]\[ 3 \times \sqrt[3]{128} = 3 \times 5.0396842 = 15.1190526 \][/tex]
7. Sum the first two products and subtract the third:
[tex]\[ 7.5595263 + 11.3392894 - 15.1190526 \][/tex]
8. Calculate the final result:
[tex]\[ 7.5595263 + 11.3392894 = 18.8988157 \][/tex]
[tex]\[ 18.8988157 - 15.1190526 = 3.7797631 \][/tex]
Therefore, the result of the expression [tex]\( 3 \sqrt[3]{16} + 3 \sqrt[3]{54} - 3 \sqrt[3]{128} \)[/tex] is approximately [tex]\( 3.7797631 \)[/tex].
Let's summarize the intermediate values and the final result as follows:
1. The term [tex]\( 3 \sqrt[3]{16} \)[/tex] evaluates to approximately [tex]\( 7.5595263 \)[/tex].
2. The term [tex]\( 3 \sqrt[3]{54} \)[/tex] evaluates to approximately [tex]\( 11.3392894 \)[/tex].
3. The term [tex]\( 3 \sqrt[3]{128} \)[/tex] evaluates to approximately [tex]\( 15.1190526 \)[/tex].
4. The final result of the expression is approximately [tex]\( 3.7797631 \)[/tex].
1. Calculate the cube root of 16:
[tex]\[ \sqrt[3]{16} \][/tex]
The cube root of 16 is approximately [tex]\( 2.5198421 \)[/tex].
2. Multiply the cube root of 16 by 3:
[tex]\[ 3 \times \sqrt[3]{16} = 3 \times 2.5198421 = 7.5595263 \][/tex]
3. Calculate the cube root of 54:
[tex]\[ \sqrt[3]{54} \][/tex]
The cube root of 54 is approximately [tex]\( 3.7797631 \)[/tex].
4. Multiply the cube root of 54 by 3:
[tex]\[ 3 \times \sqrt[3]{54} = 3 \times 3.7797631 = 11.3392894 \][/tex]
5. Calculate the cube root of 128:
[tex]\[ \sqrt[3]{128} \][/tex]
The cube root of 128 is approximately [tex]\( 5.0396842 \)[/tex].
6. Multiply the cube root of 128 by 3:
[tex]\[ 3 \times \sqrt[3]{128} = 3 \times 5.0396842 = 15.1190526 \][/tex]
7. Sum the first two products and subtract the third:
[tex]\[ 7.5595263 + 11.3392894 - 15.1190526 \][/tex]
8. Calculate the final result:
[tex]\[ 7.5595263 + 11.3392894 = 18.8988157 \][/tex]
[tex]\[ 18.8988157 - 15.1190526 = 3.7797631 \][/tex]
Therefore, the result of the expression [tex]\( 3 \sqrt[3]{16} + 3 \sqrt[3]{54} - 3 \sqrt[3]{128} \)[/tex] is approximately [tex]\( 3.7797631 \)[/tex].
Let's summarize the intermediate values and the final result as follows:
1. The term [tex]\( 3 \sqrt[3]{16} \)[/tex] evaluates to approximately [tex]\( 7.5595263 \)[/tex].
2. The term [tex]\( 3 \sqrt[3]{54} \)[/tex] evaluates to approximately [tex]\( 11.3392894 \)[/tex].
3. The term [tex]\( 3 \sqrt[3]{128} \)[/tex] evaluates to approximately [tex]\( 15.1190526 \)[/tex].
4. The final result of the expression is approximately [tex]\( 3.7797631 \)[/tex].
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.