Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To solve the system of linear equations:
[tex]\[ \begin{cases} 2x + y = 3 \\ 3x + 5y = 1 \end{cases} \][/tex]
we can use the method of elimination or substitution. Here's a step-by-step solution using the elimination method:
1. Write the equations in standard form:
[tex]\[ 2x + y = 3 \quad \text{(Equation 1)} \][/tex]
[tex]\[ 3x + 5y = 1 \quad \text{(Equation 2)} \][/tex]
2. Eliminate one variable by making their coefficients equal:
To eliminate [tex]\( y \)[/tex], we need the coefficients of [tex]\( y \)[/tex] to be the same. We can multiply Equation 1 by 5:
[tex]\[ 5(2x + y) = 5(3) \][/tex]
Simplifying this, we get:
[tex]\[ 10x + 5y = 15 \quad \text{(Equation 3)} \][/tex]
3. Subtract Equation 2 from Equation 3:
[tex]\[ (10x + 5y) - (3x + 5y) = 15 - 1 \][/tex]
Simplifying this, we get:
[tex]\[ 7x = 14 \][/tex]
4. Solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{14}{7} = 2 \][/tex]
5. Substitute [tex]\( x = 2 \)[/tex] back into one of the original equations to find [tex]\( y \)[/tex]:
Using Equation 1:
[tex]\[ 2(2) + y = 3 \][/tex]
Simplifying this, we get:
[tex]\[ 4 + y = 3 \][/tex]
Solving for [tex]\( y \)[/tex]:
[tex]\[ y = 3 - 4 = -1 \][/tex]
6. Solution:
Hence, the solution to the system of equations is:
[tex]\[ x = 2, \quad y = -1 \][/tex]
So the values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] that satisfy the given system of equations are [tex]\( x = 2 \)[/tex] and [tex]\( y = -1 \)[/tex].
[tex]\[ \begin{cases} 2x + y = 3 \\ 3x + 5y = 1 \end{cases} \][/tex]
we can use the method of elimination or substitution. Here's a step-by-step solution using the elimination method:
1. Write the equations in standard form:
[tex]\[ 2x + y = 3 \quad \text{(Equation 1)} \][/tex]
[tex]\[ 3x + 5y = 1 \quad \text{(Equation 2)} \][/tex]
2. Eliminate one variable by making their coefficients equal:
To eliminate [tex]\( y \)[/tex], we need the coefficients of [tex]\( y \)[/tex] to be the same. We can multiply Equation 1 by 5:
[tex]\[ 5(2x + y) = 5(3) \][/tex]
Simplifying this, we get:
[tex]\[ 10x + 5y = 15 \quad \text{(Equation 3)} \][/tex]
3. Subtract Equation 2 from Equation 3:
[tex]\[ (10x + 5y) - (3x + 5y) = 15 - 1 \][/tex]
Simplifying this, we get:
[tex]\[ 7x = 14 \][/tex]
4. Solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{14}{7} = 2 \][/tex]
5. Substitute [tex]\( x = 2 \)[/tex] back into one of the original equations to find [tex]\( y \)[/tex]:
Using Equation 1:
[tex]\[ 2(2) + y = 3 \][/tex]
Simplifying this, we get:
[tex]\[ 4 + y = 3 \][/tex]
Solving for [tex]\( y \)[/tex]:
[tex]\[ y = 3 - 4 = -1 \][/tex]
6. Solution:
Hence, the solution to the system of equations is:
[tex]\[ x = 2, \quad y = -1 \][/tex]
So the values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] that satisfy the given system of equations are [tex]\( x = 2 \)[/tex] and [tex]\( y = -1 \)[/tex].
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.