Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To solve the system of linear equations:
[tex]\[ \begin{cases} 2x + y = 3 \\ 3x + 5y = 1 \end{cases} \][/tex]
we can use the method of elimination or substitution. Here's a step-by-step solution using the elimination method:
1. Write the equations in standard form:
[tex]\[ 2x + y = 3 \quad \text{(Equation 1)} \][/tex]
[tex]\[ 3x + 5y = 1 \quad \text{(Equation 2)} \][/tex]
2. Eliminate one variable by making their coefficients equal:
To eliminate [tex]\( y \)[/tex], we need the coefficients of [tex]\( y \)[/tex] to be the same. We can multiply Equation 1 by 5:
[tex]\[ 5(2x + y) = 5(3) \][/tex]
Simplifying this, we get:
[tex]\[ 10x + 5y = 15 \quad \text{(Equation 3)} \][/tex]
3. Subtract Equation 2 from Equation 3:
[tex]\[ (10x + 5y) - (3x + 5y) = 15 - 1 \][/tex]
Simplifying this, we get:
[tex]\[ 7x = 14 \][/tex]
4. Solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{14}{7} = 2 \][/tex]
5. Substitute [tex]\( x = 2 \)[/tex] back into one of the original equations to find [tex]\( y \)[/tex]:
Using Equation 1:
[tex]\[ 2(2) + y = 3 \][/tex]
Simplifying this, we get:
[tex]\[ 4 + y = 3 \][/tex]
Solving for [tex]\( y \)[/tex]:
[tex]\[ y = 3 - 4 = -1 \][/tex]
6. Solution:
Hence, the solution to the system of equations is:
[tex]\[ x = 2, \quad y = -1 \][/tex]
So the values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] that satisfy the given system of equations are [tex]\( x = 2 \)[/tex] and [tex]\( y = -1 \)[/tex].
[tex]\[ \begin{cases} 2x + y = 3 \\ 3x + 5y = 1 \end{cases} \][/tex]
we can use the method of elimination or substitution. Here's a step-by-step solution using the elimination method:
1. Write the equations in standard form:
[tex]\[ 2x + y = 3 \quad \text{(Equation 1)} \][/tex]
[tex]\[ 3x + 5y = 1 \quad \text{(Equation 2)} \][/tex]
2. Eliminate one variable by making their coefficients equal:
To eliminate [tex]\( y \)[/tex], we need the coefficients of [tex]\( y \)[/tex] to be the same. We can multiply Equation 1 by 5:
[tex]\[ 5(2x + y) = 5(3) \][/tex]
Simplifying this, we get:
[tex]\[ 10x + 5y = 15 \quad \text{(Equation 3)} \][/tex]
3. Subtract Equation 2 from Equation 3:
[tex]\[ (10x + 5y) - (3x + 5y) = 15 - 1 \][/tex]
Simplifying this, we get:
[tex]\[ 7x = 14 \][/tex]
4. Solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{14}{7} = 2 \][/tex]
5. Substitute [tex]\( x = 2 \)[/tex] back into one of the original equations to find [tex]\( y \)[/tex]:
Using Equation 1:
[tex]\[ 2(2) + y = 3 \][/tex]
Simplifying this, we get:
[tex]\[ 4 + y = 3 \][/tex]
Solving for [tex]\( y \)[/tex]:
[tex]\[ y = 3 - 4 = -1 \][/tex]
6. Solution:
Hence, the solution to the system of equations is:
[tex]\[ x = 2, \quad y = -1 \][/tex]
So the values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] that satisfy the given system of equations are [tex]\( x = 2 \)[/tex] and [tex]\( y = -1 \)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.